Patents Examined by Kiet T. Nguyen
  • Patent number: 11984308
    Abstract: A method for measuring the concentration of fluorine gas (F2) contained in a halogen fluoride-containing gas using an analysis apparatus having a halogen fluoride-containing gas supply source, a fluorine-containing gas supply source, a tube, a capillary, and a mass spectrometer, the method including, before measuring the concentration of fluorine gas, performing passivation treatment on the tube and the capillary using a passivation gas containing a fluorine-containing gas supplied from the fluorine-containing gas supply source.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: May 14, 2024
    Assignee: Resonac Corporation
    Inventor: Atsushi Suzuki
  • Patent number: 11984310
    Abstract: A method of operating an inductively coupled plasma mass spectrometry apparatus for analyzing an analyte sample, the mass spectrometry apparatus including a plasma ion source, a mass analyzer and an interface arrangement positioned between the plasma ion source and the mass analyzer of the mass spectrometer, the interface arrangement at least including an interface structure, including a sampling or skimmer cone, and at least one passage with an inlet and an outlet into a reaction zone, the method including: generating a plasma using the plasma ion source and forming a plasma flux to flow towards the mass analyzer; supplying the analyte sample into the reaction zone via the passage such that the analyte sample interacts with the plasma flux; and analyzing the analyte sample using the mass analyzer.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: May 14, 2024
    Assignee: Analytik Jena GmbH
    Inventors: Roland Lehmann, Wolfram Weisheit, Iouri Kalinitchenko
  • Patent number: 11982634
    Abstract: Techniques for adapting an adaptive specimen image acquisition system using an artificial neural network (ANN) are disclosed. An adaptive specimen image acquisition system is configurable to scan a specimen to produce images of varying qualities. An adaptive specimen image acquisition system first scans a specimen to produce a low-quality image. An ANN identifies objects of interest within the specimen image. A scan mask indicates regions of the image corresponding to the objects of interest. The adaptive specimen image acquisition system scans only the regions of the image corresponding to the objects of interest, as indicated by the scan mask, to produce a high-quality image. The low-quality image and the high-quality image are merged in a final image. The final image shows the objects of interest at a higher quality, and the rest of the specimen at a lower quality.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: May 14, 2024
    Assignee: FEI Company
    Inventor: Pavel Potocek
  • Patent number: 11980674
    Abstract: The present disclosure relates to methods of administering [18F]-FACBC. The present disclosure also relates to use of [18F]-FACBC in methods for imaging, diagnosing and monitoring metastasis or recurrence of cancer.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: May 14, 2024
    Assignee: Blue Earth Diagnostics Limited
    Inventors: Eugene Teoh, Matthew Miller, Peter Gardiner
  • Patent number: 11978617
    Abstract: A detection device for detecting charges particles. The active area of the detector extends along a principal direction over several centimeters and up to 1 meter or more. This allows for its use as a focal plane detector for a mass spectrometer device, allowing to record all mass-to-charge ratios provided by the spectrometer in parallel and within a reduced acquisition time.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: May 7, 2024
    Assignee: LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY (LIST)
    Inventors: Hung Quang Hoang, Tom Wirtz
  • Patent number: 11978609
    Abstract: An electron gun EG in which mixing of secondary electrons is suppressed is provided. The electron gun EG has an electron source 1, an extraction electrode 2 for extracting an electron beam E1 from the electron source 1, and an acceleration electrode for accelerating the extracted electron beam E1. The extraction electrode 2 includes a diaphragm 4 for allowing a part of the electron beam E1 to pass through, a shield 5 positioned above the diaphragm 4 apart from the diaphragm 4, and a shield 6 positioned below the diaphragm 4 apart from the diaphragm 4. The diaphragm 4 has an opening OP4 having an opening diameter D4, the shield 5 has an opening OP5 having an opening diameter D5 which is greater than the opening diameter D4, and the shield 6 has an opening OP6 having an opening diameter D6 which is greater than the opening diameter D4.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: May 7, 2024
    Assignee: Hitachi High-Tech Corporation
    Inventor: Minoru Kaneda
  • Patent number: 11977039
    Abstract: There is provided systems and methods for determining variability of cryo-EM protein structures from a set of cryo-electron microscope images. The method includes: performing iterative optimization, each optimization iteration including: determining the updated variability coordinates for individual images from the set of images using a current value of the variability components; determining the updated variability components for multiple images of the set of images, using the updated value of the variability coordinates, by solving a set of linear equations, the linear equations comprising a sum of weighted compositions of projection and back-projection operators, the equations are solved by arranging the equations into a block-diagonal matrix form.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: May 7, 2024
    Inventor: Ali Punjani
  • Patent number: 11978618
    Abstract: A component of an ion optical device is manufactured. The component comprises aligned first and second electrode sets. A first material is machined to provide a part-machined first electrode set that comprises the first electrode set attached to a frame part of the first material. A second material is machined to provide a part-machined second electrode set that comprises the second electrode set attached to a frame part of the second material. The component of the ion optical device is assembled by aligning the part-machined first and second electrode sets. Subsequent to aligning the part-machined first and second electrode sets, the part-machined first electrode set is further machined to separate the first electrode set from the frame part of the first material and the part-machined second electrode set is further machined to separate the second electrode set from the frame part of the second material.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: May 7, 2024
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventor: Wilko Balschun
  • Patent number: 11972938
    Abstract: A voltage supply for a mass analyser is provided. The voltage supply comprises a voltage source, a first voltage output, a second voltage output, and a voltage divider network. The first voltage output is configured to provide a first voltage to a first electrode of the mass analyser, wherein the first electrode of the mass analyser has a first mass shift per volt perturbation. The second voltage output is configured to provide a second voltage to a second electrode of the mass analyser, wherein the second electrode of the mass analyser has a second mass shift per volt perturbation. The second mass shift per volt perturbation opposes the first mass shift per volt perturbation. The voltage divider network comprises a first resistor and a second resistor.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: April 30, 2024
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Hamish Stewart, Dmitry Grinfeld, Philipp Cochems
  • Patent number: 11967496
    Abstract: The present invention relates to the high resolution imaging of samples using imaging mass spectrometry (IMS) and to the imaging of biological samples by imaging mass cytometry (IMC™) in which labelling atoms are detected by IMS. LA-ICP-MS (a form of IMS in which the sample is ablated by a laser, the ablated material is then ionised in an inductively coupled plasma before the ions are detected by mass spectrometry) has been used for analysis of various substances, such as mineral analysis of geological samples, analysis of archaeological samples, and imaging of biological substances. However, traditional LA-ICP-MS systems and methods may not provide high resolution. Described herein are methods and systems for high resolution IMS and IMC.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: April 23, 2024
    Assignees: University of Ottawa
    Inventors: Paul Corkum, Alexander V. Loboda
  • Patent number: 11968767
    Abstract: A EUV light source includes a prepulse laser source for emitting a prepulse laser beam at a prepulse wavelength, a main pulse laser source for emitting a main pulse laser beam at a main pulse wavelength, a prepulse beam guiding device for feeding the prepulse laser beam into a radiation generating chamber for irradiation of a target material with a prepulse, and a main pulse beam guiding device for feeding the main pulse laser beam into the radiation generating chamber for irradiation of the target material with a main pulse. The target material is configured to emit EUV radiation on account of the irradiation with the prepulse and the main pulse. The prepulse beam guiding device has a separation device configured to reflect disturbing radiation in a wavelength range that does not include the prepulse wavelength back into the radiation generating chamber or into at least one beam trap.
    Type: Grant
    Filed: October 25, 2023
    Date of Patent: April 23, 2024
    Assignee: TRUMPF LASERSYSTEMS FOR SEMICONDUCTOR MANUFACTURING GMBH
    Inventors: Oliver Schlosser, Stefan Piehler
  • Patent number: 11961701
    Abstract: When adjusting optical axes of a multi-beam charged particle beam device, because parameters of optical systems are inter-dependent, the time required to adjust the parameters increases. Thus, the present invention provides a charged particle beam device provided with an optical parameter setting unit for setting parameters of optical systems for emitting a plurality of primary charged particle beams to a sample, detectors for individually detecting a plurality of secondary charged particle beams discharged from the sample, a plurality of memories for storing signals detected by the detectors and converted into digital pixels in the form of images, evaluation value derivation units for deriving evaluation values of the primary charged particle beams from the images, and a GUI capable of displaying the images and receiving an input from a user, wherein the GUI displays the images and evaluation results based on the evaluation values and changes various optical parameters in real-time.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: April 16, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Tomoharu Nagashima, Kazuki Ikeda, Wen Li, Masashi Wada, Hajime Kawano
  • Patent number: 11963285
    Abstract: Provided is an apparatus that includes a first reservoir system including a first fluid reservoir configured to be in fluid communication with a nozzle supply system during operation of the nozzle supply system, a second reservoir system including a second fluid reservoir configured to be, at least part of the time during operation of the nozzle supply system, in fluid communication with the first reservoir system, a priming system configured to produce a fluid target material from a solid matter, and a fluid control system fluidly connected to the priming system, the first reservoir system, the second reservoir system, and the nozzle supply system. The fluid control system is configured to, during operation of the nozzle supply system: isolate at least one fluid reservoir and the nozzle supply system from the priming system, and maintain a fluid flow path between at least one fluid reservoir and the nozzle supply system.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: April 16, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Abhiram Lakshmi Ganesh Govindaraju, David Bessems, Sandeep Rai, Petrus Adrianus Willems, Serkan Kincal, Joshua Mark Lukens, Jon David Tedrow
  • Patent number: 11959897
    Abstract: Disclosed are methods for improving compound detection and characterization. Methods for characterizing a sample are disclosed. The methods can include providing a sample to a liquid chromatography system capable of sample separation to generate sample components; analyzing sample components by multiplexed targeted selected ion monitoring (SIM) to generate an inclusion list; and performing iterative mass spectral data-dependent acquisition (DDA) from the inclusion list, to identify individual sample components thereby characterizing the sample. In one example, multiplexed targeted SIMs and iterative MS2 DDA acquisition is used to increase robust compound identification for cell culture medium analysis.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: April 16, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jikang Wu, Hongxia Wang, Haibo Qiu, Ning Li
  • Patent number: 11951334
    Abstract: A patient positioning device has a robot arm and a patient receptacle held at the robot arm. The patient positioning device has a housing assembly for the robot arm. The housing assembly is provided with one or more housing units surrounding the robot arm at least partially. The one or more housing units are secured at the robot arm. The patient positioning device is provided with a shielding against ionizing radiation. At least one part of the shielding is arranged at the one or more housing units.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: April 9, 2024
    Assignee: BEC GmbH
    Inventor: Matthias Buck
  • Patent number: 11951220
    Abstract: The present invention refers to a storage device for headphones comprising a compartment for non liquid means for cleaning the headphones and/or means for charging electronic devices. It further refers to a cleaning device for headphones.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: April 9, 2024
    Assignee: DEGAUSS LABS AB
    Inventors: Claes Persson, Nicolas Persson
  • Patent number: 11953419
    Abstract: Disclosed is an apparatus for monitoring bioaerosols, including a capturer configured to capture bioaerosol particles in air in a capture solution; a particle sprayer configured to electro-spray the capture solution in a form of droplets such that the particles are included in at least some of the sprayed droplets; and an analyzer configured to analyze the particles, sprayed through the particle sprayer, by machine learning. In accordance with such a configuration, the droplets containing a certain amount of the particles can be continuously analyzed in real time by machine learning, thereby contributing to the improvement of monitoring efficiency for a specific bioaerosol genus.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: April 9, 2024
    Assignee: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Jung Ho Hwang, Sang Gwon An, Hyeong Rae Kim
  • Patent number: 11951545
    Abstract: A cask liner includes a hollow cylinder comprising a boron-containing composition. The hollow cylinder has no longitudinal joints. The hollow cylinder may be formed as a single unit by isostatic pressing, for example by hot isostatic pressing (HIP) of a blend of a boron-containing powder and an aluminum or aluminum alloy powder which is blended by mechanical alloying. Casked nuclear fuel includes a nuclear fuel rod comprising uranium, which is disposed in or extends through the hollow cylinder of the cask liner.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: April 9, 2024
    Assignee: Materion Corporation
    Inventors: Stuart Godfrey, Lawrence H. Ryczek, Andrew D. Tarrant
  • Patent number: 11948702
    Abstract: A radiation source apparatus includes a vessel, a laser source, a collector, a horizontal obscuration bar, and a reflective mirror. The vessel has an exit aperture. The laser source is configured to emit a laser beam to excite a target material to form a plasma. The collector is disposed in the vessel and configured to collect a radiation emitted by the plasma and to reflect the collected radiation to the exit aperture of the vessel. The horizontal obscuration bar extends from a sidewall of the vessel at least to a position between the laser source and the exit aperture of the vessel. The reflective mirror is in the vessel and connected to the horizontal obscuration bar.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Chung Tu, Sheng-Kang Yu, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Patent number: 11940736
    Abstract: A tin trap device for collecting tin in a chamber device which causes tin to be turned into plasma with laser light in an internal space thereof may include a housing provided with a gas inlet port through which exhaust gas in the chamber device flows and a gas exhaust port through which the exhaust gas is exhausted; and a main heater arranged in the housing, configured to have a temperature equal to or higher than the melting point of tin and lower than the boiling point thereof, and having a projection surface projected toward a direction in which the exhaust gas flows in the gas inlet port cover the gas inlet port.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: March 26, 2024
    Assignee: Gigaphoton Inc.
    Inventors: Gota Niimi, Yoshifumi Ueno, Shinji Nagai