Patents Examined by Kiho Kim
  • Patent number: 11213272
    Abstract: The present disclosure is related to systems and methods for monitoring a medical device. The medical device may include a tube configured to generate radiation rays and a detector configured to receive radiation rays emitted from the tube. The tube may include an anode target and a filament. The detector may include a plurality of detecting units. The method may include obtaining imaging data acquired by the detector via detecting radiation rays emitted from the tube. The method may also include determining a first feature parameter associated with the radiation rays based on the imaging data. The method may further include monitoring the medical device based on the first feature parameter associated with the radiation rays.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 4, 2022
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Tao He, Jiawen Zhou, Zhouyuan Fan, Bing Li, Pei Zhou
  • Patent number: 11215450
    Abstract: Disclosed is a method of calculating a thickness of an ultra-thin film having a nm-order thickness based on measuring a thickness of each of ultra-thin films having different thicknesses by using a first thickness measurement method with length-unit traceability and separately measuring the thickness of each of the ultra-thin films having different thicknesses by using a second thickness measurement method with offset traceability.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: January 4, 2022
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Kyung Joong Kim, Tae Gun Kim
  • Patent number: 11215717
    Abstract: A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltage output from the amplifier of each of the plurality of pixels to a digital value and output the digital value, a correction unit configured to correct the digital value output from the A/D converter so that an influence of a variation in a gain and an offset value among the plurality of pixels is curbed, a calculation unit configured to output a summed value obtained by summing the corrected digital values corresponding to at least two pixels, and a conversion unit configured to convert the summed value output from the calculation unit to a number of photons.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: January 4, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tadashi Maruno, Eiji Toda, Mao Nakajima, Teruo Takahashi, Takafumi Higuchi
  • Patent number: 11204430
    Abstract: A method for adjusting a gain of a gamma detector comprises detecting gamma radiation using the detector, recording the detected radiation as count rates in channels, wherein the last channel accumulates all counts above the maximum recorded energy; comparing the last channel count rate (LCCR) to a threshold X and, if LCCR>X, decreasing the gain by a preset amount Y. If LCCR?X, establishing a first estimate of a needed voltage HV1 using tool temperature and a temperature lookup table, and establishing a second estimate of a needed voltage HV2 using a backscatter peak value and a backscatter lookup table; comparing |HV1?HV2| to a threshold Z; if |HV1?HV2|<Z, adjusting the gain of the gamma detector by HV2 or, if |HV1?HV2|?Z, adjusting the gain of the gamma detector by HV1.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: December 21, 2021
    Assignee: SCIENTIFIC DRILLING INTERNATIONAL, INC.
    Inventor: Medhat Mickael
  • Patent number: 11204242
    Abstract: A measurement system is provided, including a measurement machine and a computer. The measurement machine is configured to measure a thickness T1 of a to-be-tested circuit board and a drilling depth D1 of the to-be-tested circuit board. The computer calculates a length S1 of a residual conductive portion in a back drilled hole of the to-be-tested circuit board according to a thickness T of a reference circuit board, a drilling depth D of the reference circuit board, a length S of a residual conductive portion in a back drilled hole of the reference circuit board, the thickness T1 of the to-be-tested circuit board and the drilling depth D1 of the to-be-tested circuit board.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: December 21, 2021
    Assignee: Gold Circuit Electronics Ltd.
    Inventors: Tien-Chieh Kang, Chih-Ming Tsai
  • Patent number: 11194063
    Abstract: Provided are an X-ray detector including a plurality of pixel driving micro integrated chips separately fabricated from a photodiode layer and printed on the photodiode layer and a method for manufacturing the X-ray detector. The X-ray detector may include a photodiode layer and a driver layer. The photodiode layer may include a plurality of photodiodes and be configured to receive X-ray that have passed through a target object and convert the received X-ray to electric signals. The driver layer may be formed on the photodiode layer and include a plurality of micro driving integrated chips each coupled to two or more photodiodes in the photodiode layer. The plurality of pixel driving integrated chips may be manufactured separately from the photodiode layer and printed on the photodiode layer using a micro-transfer printing method.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: December 7, 2021
    Assignees: RAYENCE Co., Ltd., VATECH EWOO Holdings Co., Ltd., Qpix solutions Inc.
    Inventors: Seungman Yun, Ho Seok Lee, Jin Woong Jeong
  • Patent number: 11193888
    Abstract: A system featuring a substrate and a multiplicity of nanostructures arranged on the substrate is provided. At least one portion of the nanostructures feature a capturing moiety covalently attached to a surface thereof and at least another portion of the nanostructures, which can be the same or different from the first portion, feature a light-activatable moiety covalently attached to a surface thereof. The capturing moiety is such that selectively interacts with an analyte, and the light-activatable moiety generates, upon exposure to light, a reactive moiety that interferes with an interaction of the capturing moiety and the analyte. Further provided are systems featuring a substrate and a multiplicity of nanostructures aligned generally vertically to the substrate, at least a portion of these nanostructures being branched nanostructures. Uses of the systems in extracting, and optionally identifying, the analyte from a sample are also provided.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: December 7, 2021
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Fernando Patolsky, Vadim Krivitsky
  • Patent number: 11193832
    Abstract: An infrared detector includes: a laminate of semiconductor in which a first electrode layer, a light receiving layer, and a second electrode layer are laminated in this order; a first insulating film configured to be in contact with the laminate and covers a surface of the laminate; and a second insulating film configured to be in contact with and covers a surface of the first insulating film opposite to an interface between the first insulating film and the laminate, wherein the first insulating film is configured to have a lower Gibbs free energy than an oxide of a material from which the laminate is formed, and in the second insulating film, diffusion of impurity is larger than in the first insulating film.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: December 7, 2021
    Assignee: FUJITSU LIMITED
    Inventors: Ryo Suzuki, Hironori Nishino, Koji Tsunoda
  • Patent number: 11194064
    Abstract: An apparatus for providing in-situ radiation measurements within a density equivalent package is disclosed. The apparatus may include a radiation detector embedded within the density equivalent package that is configured to measure an amount of exposure of a phantom material of the density equivalent package to radiation emitted by an irradiation device. The phantom material may have density equivalence with an object or substance for which radiation exposure information is sought and the phantom material may serve as a substitute for the object or substance. A signal including the measurement of the amount of exposure of the phantom material to the radiation may be provided to a processor of the apparatus for processing. The processor may process the signal to interpret and provide additional information relating to the measurement and may provide the information to a device communicatively linked to the apparatus.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: December 7, 2021
    Assignee: Rad Source Technologies, Inc.
    Inventors: Justin Czerniawski, Steven Brett, Shane Jackson
  • Patent number: 11191498
    Abstract: An apparatus for detecting a locating medium in tissue includes a probe, and a console. The probe includes a handle and a detector disposed on a distal end of the probe. The console is in communication and includes a display. The display has a first graphical representation and a second graphical representation. The first graphical representation is configured to depict a count real-time count based on a signal from the detector. The second graphical representation is configured to depict a target count.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: December 7, 2021
    Assignee: Devicor Medical Products, Inc.
    Inventors: Trevor W. V. Speeg, Michael E. Henley, Brian Michael Ruffner, Michael B. Watts, Harry Kyuhoon Ahn, Elijah Kreider
  • Patent number: 11193885
    Abstract: In accordance with an embodiment, a gas sensor includes a substrate having a cavity for providing an optical interaction path; a thermal emitter configured to emit broadband IR radiation; a wavelength selective structure configured to filter the broadband IR radiation emitted by the thermal emitter; and an IR detector configured to provide a detector output signal based on a strength of the filtered IR radiation having traversed the optical interaction path.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: December 7, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Andreas Tortschanoff, Cristina Consani, Thomas Grille, Peter Irsigler, Christian Ranacher
  • Patent number: 11194061
    Abstract: A photodetector includes N photodetection pixels arranged one-dimensionally or two-dimensionally and each for generating a detection signal in response to incidence of light, and a single output terminal for outputting the detection signal generated in each of the N photodetection pixels. Each of the N photodetection pixels includes an avalanche photodiode operating in Geiger mode, and a quenching resistor connected in series to the avalanche photodiode, and the N photodetection pixels are configured to output detection signals having time waveforms different from each other.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: December 7, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Ryosuke Ota
  • Patent number: 11187819
    Abstract: Disclosed herein is an apparatus suitable for radiation detection. The apparatus may comprise a radiation absorption layer and a first electrode on the radiation absorption layer. The radiation absorption layer may be configured to generate charge carriers therein from a radiation particle absorbed by the radiation absorption layer. The first electrode may be configured to generate an electric field in the radiation absorption layer. The first electrode may have a geometry shaping the electric field so that the electric field in an amplification region of the radiation absorption layer has a field strength sufficient to cause an avalanche of the charge carriers in the amplification region.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: November 30, 2021
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 11187589
    Abstract: High-resolution thermopile infrared sensor array having a plurality of parallel signal processing channels for the signals of a sensor array and a digital port for serially emitting the signals. Each signal processing channel comprises at least one analog to digital converter and is assigned a memory for storing the results of the analog to digital converters. Power consumption of the infrared sensor array is reduced in the case of a sensor array with at least 16 rows and at least 16 columns, in that no more than 8 or 16 pixels are connected to a signal processing channel. The number of signal processing channels corresponds to at least 4 times the number of rows. Some of the signal processing channels are disposed in the intermediate space between the pixels and others are disposed in an outer edge region of the sensor chip surrounding the sensor array along with other electronics.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: November 30, 2021
    Assignee: Heimann Sensor GmbH
    Inventors: Jörg Schieferdecker, Bodo Forg, Michael Schnorr, Karlheinz Storck, Wilhelm Leneke, Marion Simon
  • Patent number: 11187817
    Abstract: A radiation detector includes a substrate having flexibility, a plurality of pixels which are provided on a surface of the substrate and each of which includes a photoelectric conversion element, and a scintillator that is stacked on the substrate and has a plurality of corners. An outer edge of each of the corners of the scintillator is disposed closer to the inside of the substrate than an extension line of each of sides sharing the corner.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: November 30, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Naoto Iwakiri, Haruyasu Nakatsugawa
  • Patent number: 11187659
    Abstract: Systems for allowing adjustable imaging of specimens of various sizes in solutions of various refractive indices, such as those with a refractive index of at least 1.45, for use in microscopes such as fluorescent light sheet microscopes. The systems allow for imaging large specimens in various refractive indices while maintaining the highest optical sectioning provided by the objectives used across the full range of microscope stage travel. The systems also allow the use of a wider range of optics, such as low magnification 2.5× detection objectives, allowing for increased imaging speed and field of view.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: November 30, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, TRANSLUCENCE BIOSYSTEMS, INC.
    Inventors: Sunil Gandhi, Ricardo R. Azevedo, Damian Wheeler
  • Patent number: 11179579
    Abstract: An image-guided radiation therapy apparatus comprises: a high-energy ray source configured for radiation therapy of an object; and a KV ray source, a first and second PET detectors, and a CT detector for KV CT and PET imaging for guiding the radiation therapy. The KV ray source is placed on, or at an inner or outer side of the first PET detector; the second PET detector and the CT detector are configured to receive the KV ray to perform KV CT imaging; the PET detectors are further configured to receive gamma ray emitted by the object to perform PET imaging.
    Type: Grant
    Filed: December 29, 2018
    Date of Patent: November 23, 2021
    Assignee: Tsinghua University
    Inventors: Hewei Gao, Zhiqiang Chen, Li Zhang, Yuxiang Xing
  • Patent number: 11175212
    Abstract: An apparatus and method for analyzing particulates in a sample is disclosed. The method includes placing the sample on a moveable stage in an apparatus having a tunable MIR light scanner and a visible imaging system, the stage moving between the MIR light scanner and the visible imaging system, providing a visible image of the sample, and receiving user input as to a region of the sample that is to be analyzed. The sample is then moved to the MIR light scanner, the MIR light scanner generating an MIR light beam that is focused to a point on the specimen and measuring light reflected from the specimen. The specimen is then scanned at a first MIR wavelength by moving the specimen relative to the MIR light beam, and particles are identified that meet a selection criterion. The MIR absorption spectrum of each of the identified particle is then automatically measured.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: November 16, 2021
    Assignee: Agilent Technologies, Inc.
    Inventors: Christopher Ryan Moon, Andrew Ghetler, Matthew Kole
  • Patent number: 11171171
    Abstract: Disclosed herein is an apparatus suitable for detecting X-ray. The apparatus may comprise an X-ray absorption layer, an electronics layer and a distribution layer. The X-ray absorption layer may comprise a first plurality of electric contacts and configured to generate electrical signals on the first plurality of electric contacts from X-ray incident on the X-ray absorption layer. The electronics layer may comprise a second plurality of electric contacts and an electronic system, wherein the electric system electrically connects to the second plurality of electric contacts and is configured to process or interpret the electrical signals. The first plurality of electric contacts and the second plurality of electric contacts have different spatial distributions. The distribution layer is configured to electrically connect the first plurality of electric contacts to the second plurality of electric contacts.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: November 9, 2021
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 11162892
    Abstract: A device (100) for measuring light transmission through a suspected counterfeit pharmaceutical tablet (102) includes a laser source (110) configured to emit a light transmission through the pharmaceutical tablet (102). A light detector (120) is included in the device (100) configured to receive the light transmission and measure an amount of light passed through the suspected counterfeit pharmaceutical tablet (102). The amount of light transmitted through the suspected counterfeit pharmaceutical tablet (102) is indicative of an authentic or counterfeit.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: November 2, 2021
    Assignee: The USA, as represented by the Secretary, Dept. of Health and Human Services
    Inventor: Michael D. Green