Patents Examined by Laureen Chan
  • Patent number: 11361939
    Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: June 14, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
  • Patent number: 11352696
    Abstract: A plasma source has an outer surface, interrupted by an aperture for delivering an atmospheric plasma from the outer surface. A transport mechanism transports a substrate in parallel with the outer surface, closely to the outer surface, so that gas from the atmospheric plasma may form a gas bearing between the outer surface the and the substrate. A first electrode of the plasma source has a first and second surface extending from an edge of the first electrode that runs along the aperture. The first surface defines the outer surface on a first side of the aperture. The distance between the first and second surface increasing with distance from the edge.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: June 7, 2022
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST—NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Yves Lodewijk Maria Creyghton, Paulus Willibrordus George Poodt, Marcel Simor, Freddy Roozeboom
  • Patent number: 11348802
    Abstract: The present invention relates to a dry etching apparatus which can be applied regardless of materials. The dry etching apparatus may include: an anode unit; a cathode unit configured to receive a bidirectional voltage source of which the voltage polarity alternates between a positive voltage and a negative voltage with time, and separated from the anode unit; a positioning unit configured to position a work piece at a surface of the cathode unit, facing the anode unit; and a bidirectional voltage source supply unit configured to apply the bidirectional voltage source to the cathode unit.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: May 31, 2022
    Assignee: VAULT CREATION CO., LTD.
    Inventors: Sang Jun Choi, Ji Sung Kang
  • Patent number: 11348810
    Abstract: A dry etching device which can be used to etch products or used in processes regardless of materials and exhibits an excellent accuracy, and a method for controlling the same. The dry etching device includes: an anode part; a cathode part disposed at an upper side of the anode part and facing the anode part, receiving bi-directional voltage power in which polarity of a voltage alternates between a positive voltage and a negative voltage depending on time, and spaced apart from the anode part; a leveling part disposed in close contact with a surface of the cathode part facing the anode part, and for positioning a work-piece in a flat state; a holding part for holding the work-piece and the leveling part to the surface of the cathode part facing the anode part; and a bi-directional voltage power supplier for applying the bi-directional voltage power to the cathode part.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: May 31, 2022
    Assignee: VAULT CREATION CO., LTD.
    Inventors: Sang Jun Choi, Ji Sung Kang
  • Patent number: 11339477
    Abstract: Introduced here is a plasma polymerization apparatus. Example embodiments include a reaction chamber in a shape substantially symmetrical to a central axis. Some examples further include a rotation rack in the reaction chamber. The rotation rack may be operable to rotate relative to the reaction chamber about the central axis of the reaction chamber. Examples may further include reactive species discharge mechanisms positioned around a perimeter of the reaction chamber and configured to disperse reactive species into the reaction chamber in a substantially symmetrical manner from the outer perimeter of the reaction chamber toward the central axis of the reaction chamber, such that the reactive species form a polymeric coating on surfaces of the one or more substrates during said dispersion of the reactive species, and a collecting tube positioned along the central axis of the reaction chamber and having an air pressure lower than the reaction chamber.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 24, 2022
    Assignee: Jiangsu Favored Nanotechnology Co., LTD
    Inventor: Jian Zong
  • Patent number: 11276559
    Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
  • Patent number: 11257662
    Abstract: An annular member is disposed to surround a pedestal for receiving a substrate in a plasma processing apparatus. The annular member contains quartz and silicon. A content percentage of the silicon in the quartz and the silicon is 2.5% or more and 10% and less by weight.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: February 22, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Shingo Kitamura, Koichi Kazama, Masahiro Ogasawara, Susumu Nogami, Tetsuji Sato
  • Patent number: 11248295
    Abstract: A wafer carrier for use in a chemical vapor deposition (CVD) system includes a plurality of wafer retention pockets, each having a peripheral wall surface surrounding a floor surface and defining a periphery of that wafer retention pocket. Each wafer retention pocket has a periphery with a shape defined by at least a first arc having a first radius of curvature situated around a first arc center and a second arc having a second radius of curvature situated around a second arc center. The second arc is different from the first arc, either by its radius of curvature, arc center, or both.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 15, 2022
    Assignee: Veeco Instruments Inc.
    Inventors: Sandeep Krishnan, Lukas Urban
  • Patent number: 11244839
    Abstract: A plasma processing apparatus includes a process chamber, a substrate chuck disposed in the process chamber, and a temperature controller. The substrate chuck is configured to receive a substrate, and includes a cooling channel through which a coolant flows. The temperature controller is configured to control a temperature of the coolant supplied to the cooling channel. The temperature controller includes a cooler configured to cool the coolant supplied to the cooling channel, a heater configured to heat the coolant supplied to the cooling channel, and a 3-way valve configured to regulate a first flow rate of the coolant passing through the cooler and a second flow rate of the coolant passing through the heater.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 8, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Cheonkyu Lee, Siqing Lu, Takafumi Noguchi
  • Patent number: 11222796
    Abstract: Provided is a technique in which a heating-up time inside a process chamber is reduced. The technique includes a substrate processing apparatus including a process chamber where a substrate is processed, a substrate retainer configured to support the substrate in the process chamber, a process gas supply unit configured to supply a process gas into the process chamber, a first heater installed outside the process chamber and configured to heat an inside of the process chamber, a thermal insulating unit disposed under the substrate retainer, a second heater disposed in the thermal insulating unit and configured to heat the inside of the process chamber, and a purge gas supply unit configured to supply a purge gas into the thermal insulating unit to purge an inside of the thermal insulating unit.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: January 11, 2022
    Assignee: Kokusai Electric Corporation
    Inventors: Shuhei Saido, Hidenari Yoshida, Takatomo Yamaguchi, Takayuki Nakada, Tomoshi Taniyama
  • Patent number: 11145494
    Abstract: In plasma processing, damage on a cover is prevented while thermal effect on an annular frame is suppressed. Plasma processing is applied to a substrate held by a carrier including an annular frame and a holding sheet. There are provided a chamber having a decompressible internal space, a plasma source for generating plasma in the chamber, a stage that is provided in the chamber and places the carrier thereon, and a cover that is placed above the stage to cover the holding sheet and the frame, and has a window penetrating through the thickness of the cover. The cover is made of a material having a high thermal conductivity, and a front face exposed to plasma, at least on the side of the window of the cover, is covered with a protect part made of a material having a low reactivity with plasma.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: October 12, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shogo Okita, Mitsuhiro Okune
  • Patent number: 11131024
    Abstract: A method for using a fixture system and a fixture system for holding workpieces or parts to be treated by a plasma assisted vacuum process, the fixture system including magnetic means which generate a magnetic field with a magnetic force which is high enough for holding the workpiece or part. The magnetic means of the fixture system are designed and arranged in such a manner that magnetic field lines of the generated magnetic field are largely confined to the space including the fixture system and the body of the workpiece or part, so that a generation of unintended plasma inhomogeneities caused by the magnetic field lines is avoided.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: September 28, 2021
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Dong-Ju Kim, Christian Keplinger, Armin Vester, Jurgen Becker
  • Patent number: 11101114
    Abstract: A plasma processing apparatus includes a baffle structure between a mounting table and a processing chamber. The baffle structure has a first member and a second member. The first member has a first cylindrical part extending between the mounting table and the processing chamber, and a plurality of through-holes elongated in the vertical direction is formed in an array in the circumferential direction in the first cylindrical part. The second member has a second cylindrical part having an inner diameter greater than the outer diameter of the cylindrical part for the first member. The second member moves up and down in a region that includes the space between the first member and the processing chamber.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 24, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yuki Hosaka, Yoshihiro Umezawa, Toshiki Nakajima
  • Patent number: 11075060
    Abstract: Disclosed is an apparatus for processing substrate which prevents a plasma discharge from being transferred to a substrate so as to minimize damages on the substrate and also minimize deterioration in quality of a thin film deposited on the substrate, wherein the apparatus may include a process chamber for providing a reaction space, and a gas distribution module for dissociating processing gas by the use of plasma, and distributing the dissociated processing gas onto a substrate, wherein the gas distribution module may include a lower frame having a plurality of electrode inserting portions, an upper frame having a plurality of protruding electrodes and processing gas distribution holes, and an insulating plate having a plurality of electrode penetrating portions.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: July 27, 2021
    Assignee: Jusung Engineering Co., Ltd.
    Inventors: Eun Geu Ha, Sung Kook Kim, Hyun O Kim, Il Young Park
  • Patent number: 11072859
    Abstract: In a process chamber in which a substrate is processed, a gas supply unit is in the process chamber and configured to supply a process gas that processes the substrate. A plasma generation unit is in the process chamber and configured to activate the process gas, and a buffer part is configured to form a buffer chamber accommodating at least a part of the plasma generation unit and include a gas supply hole through which the activated process gas is supplied to the substrate. The buffer part includes a groove portion in which a part of the gas supply hole is cut out.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 27, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventor: Tsuyoshi Takeda
  • Patent number: 11049700
    Abstract: Systems and related methods are disclosed for atmospheric plasma processing of microelectronic workpieces, such as semiconductor wafers. For disclosed embodiments, a radio frequency (RF) generator generates an RF signal that is distributed to one or more plasma sources within a process chamber. The process chamber has an atmospheric pressure between 350 to 4000 Torr. The plasma sources are then scanned across a microelectronic workpiece to apply plasma gasses generated by the plasma generators to the microelectronic workpiece. The plasma sources can be individually scanned and/or combined in arrays for scanning across the microelectronic workpiece. Linear and/or angular movement can be applied to the plasma sources and/or the microelectronic workpiece to provide the scanning operation. Various implementations are disclosed.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: June 29, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. deVilliers, Mirko Vukovic, Brandon Byrns
  • Patent number: 11011388
    Abstract: Methods and apparatus for laterally etching unwanted material from the sidewalls of a recessed feature are described herein. In various embodiments, the method involves etching a portion of the sidewalls, depositing a protective film over a portion of the sidewalls, and cycling the etching and deposition operations until the unwanted material is removed from the entire depth of the recessed feature. Each etching and deposition operation may target a particular depth along the sidewalls of the feature. In some cases, the unwanted material is removed from the bottom of the feature up, and in other cases the unwanted material is removed from the top of the feature down. Some combination of these may also be used.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 18, 2021
    Assignee: Lam Research Corporation
    Inventors: Kwame Eason, Pilyeon Park, Mark Naoshi Kawaguchi, Seung-Ho Park, Hsiao-Wei Chang
  • Patent number: 11001926
    Abstract: A plasma generator is described which employs a partial PBN liner not only to minimise the loss of energetic gas species during film formation but also to reduce boron impurity levels introduced into the growing film relative to the use of a complete PBN liner. The use of such a plasma generator in a film forming apparatus and method of forming a film is also described.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: May 11, 2021
    Assignee: Gallium Enterprises Pty Ltd
    Inventors: Ian Mann, Satyanarayan Barik, Marie Wintrebert-Fouquet, Josh Brown, Paul Dunnigan
  • Patent number: 10978334
    Abstract: A sealing structure is between a workpiece or substrate and a carrier for plasma processing. In one example, a substrate carrier has a top surface for holding a substrate, the top surface having a perimeter and a resilient sealing ridge on the perimeter of the top surface to contact the substrate when the substrate is being carried on the carrier.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: April 13, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Chin Hock Toh, Tuck Foong Koh, Sriskantharajah Thirunavukarasu, Jen Sern Lew, Arvind Sundarrajan, Seshadri Ramaswami
  • Patent number: 10964514
    Abstract: An electrode for transmitting radiofrequency power to a plasma processing region includes a plate formed of semiconducting material and a high electrical conductivity layer formed on a top surface of the plate and integral with the plate. The high electrical conductivity layer has a lower electrical resistance than the semiconducting material of the plate. The electrode includes a distribution of through-holes. Each through-hole extends through an entire thickness of the electrode from a top surface of the high electrical conductivity layer to a bottom surface of the plate. In some embodiments, the plate can be formed of a silicon material and the high electrical conductivity layer can be a silicide material formed from the silicon material of the plate.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: March 30, 2021
    Assignee: Lam Research Corporation
    Inventors: Evan Edward Patton, John Daugherty