Patents Examined by Lauren Colgan
  • Patent number: 8835007
    Abstract: A tempered glass has a compression stress layer in a surface thereof, and includes as a glass composition in terms of mol %, 50 to 75% of SiO2, 3 to 13% of Al2O3, 0 to 1.5% of B2O3, 0 to 4% of Li2O, 7 to 20 % of Na2O, 0 to 10 % of K2O, 0.5 to 13% of MgO, 0 to 6% of CaO, and 0 to 4.5% of SrO. The tempered glass is substantially free of As2O3, Sb2O3, PbO, and F. The tempered glass has a molar ratio MgO/(MgO+Al2O3) of 0.05 to 0.30.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: September 16, 2014
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Takashi Murata, Takako Tojyo, Kosuke Kawamoto, Yuusuke Tomita
  • Patent number: 8835011
    Abstract: A cover assembly for a display device, such as a three-dimensional liquid crystal (3-D LCD) display. The cover assembly includes an aluminosilicate glass substrate that is substantially free of retardance-induced visual defects and has a thickness of less than 2 mm, a retardance of less than or equal to 5 nm over an area of at least 170 in2 (20 in diagonal), a 4-point bend strength of greater than 150 MPa.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 16, 2014
    Assignee: Corning Incorporated
    Inventors: Kevin Thomas Gahagan, Raymond G Greene, Katherine Rose Rossington
  • Patent number: 8828564
    Abstract: A glazing incorporating a glass substrate includes, on at least one portion of its surface, a stack of layers including a barrier layer to the migration of ions contained in the substrate, especially of Na+ or K+ alkali metal type, the barrier layer being interposed in the stack between the surface of the substrate and at least one upper layer giving the glazing a functionality of the solar-control, low-emissivity, antireflection, photocatalytic, hydrophobic or other type, the barrier layer essentially consisting of a silicon oxide or a silicon oxynitride, wherein the silicon oxide or oxynitride includes one or more elements selected from the group consisting of Al, Ga and B and wherein the Si/X atomic ratio is strictly less than 92/8 in the barrier layer, X being the sum of the atomic contributions of the Al, Ga and B elements.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 9, 2014
    Assignee: Saint-Gobain Glass France
    Inventor: Frédéric Clabau
  • Patent number: 8815420
    Abstract: A coated article is provided with at least one functional layer, such as an infrared (IR) reflecting layer of or including silver and/or gold. A dielectric and substantially transparent seed layer is provided under and directly contacting the functional layer. In certain example embodiments, the seed layer includes an oxide of zinc and gallium for lowering the stress of the layer and thus improving durability of the overall coating.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 26, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Alexey Krasnov, Richard Blacker
  • Patent number: 8808864
    Abstract: An IG window unit includes a coating supported by a glass substrate. The coating includes at least the following on the glass substrate moving from the glass substrate outwardly: at least one dielectric layer; a layer comprising zinc oxide; an infrared (IR) reflecting layer comprising silver; a layer comprising an oxide of Ni and/or Cr; an overcoat comprising a layer comprising tin oxide located over the oxide of Ni and/or Cr and a layer comprising silicon nitride.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 19, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Patent number: 8808882
    Abstract: A coated article is provided with at least one functional layer, such as an infrared (IR) reflecting layer(s) of or including silver and/or gold. A dielectric and substantially transparent seed layer is provided under and directly contacting the functional layer. In certain example embodiments, the seed layer includes an oxide of zinc and boron for increasing the hardness of the layer and thus improving durability of the overall coating. The seed layer may further include aluminum and/or gallium, for enhancing the electrical properties and/or reducing the stress in the resulting coating. The seed layer may be deposited by a substantially metallic target in the presence of oxygen in certain examples.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 19, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Richard Blacker
  • Patent number: 8778514
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 15, 2014
    Assignees: Intermolecular, Inc., Guardian Industries Corporation
    Inventors: Minh Huu Le, Zhi-Wen Sun, Guowen Ding, Mohd Hassan, Sandeep Jaggi, Muhammad Imran, Jingyu Lao, Yiwei Lu, Richard Blacker
  • Patent number: 8778502
    Abstract: A glass ceramic composition includes a SrZrO3 ceramic, a Li2O—MgO—ZnO—B2O3—SiO2-based glass, Mg2SiO4 in an amount of about 5 to 40 weight percent, and a SrTiO3 ceramic in an amount in the range of about 0 to about 6 weight percent of the total. The Li2O—MgO—ZnO—B2O3—SiO2-based glass accounts for about 1 to about 12 weight percent of the total.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 15, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasutaka Sugimoto, Sadaaki Sakamoto, Hiroshige Adachi
  • Patent number: 8753758
    Abstract: A low emissivity and EMI shielding transparent composite film typically for use in association with window glazing and comprising a transparent film substrate having on one side thereof an underlayer of abrasion resistant hardcoat material with at least one infrared reflective layer covering the underlayer, typically a metallic layer which may be encased in metal oxide layers, which is then covered with a thin external protective top coat of a cured fluorinated resin.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: June 17, 2014
    Assignee: CPFilms Inc.
    Inventors: Charles Nicholas Van Nutt, James Peyton Enniss, Jaime Antonio Li, Anthony Brian Port, Scott Evan Pickett, Jeremy B. Stegall, Coby Lee Hubbard, Rita Maxine Phillips, Steven Allen Barth
  • Patent number: 8741436
    Abstract: A window glass with a conductive ceramic fired body includes at least one glass plate having main surfaces, and the conductive ceramic fired body including a feeding point and a linear portion which is disposed on either one of the main surfaces of the glass plate, at least a part of the linear portion being placed in a visible region of the window glass and formed by successively laminating a first colored layer, a conductor layer and a second colored layer on the main surface, wherein the first colored layer and the second colored layer each include a pigment and a glass component, and the conductor layer includes silver and the glass component.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: June 3, 2014
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Kazuhisa Ono, Yota Yano
  • Patent number: 8741437
    Abstract: Substrate with Antimicrobial Properties An antimicrobial substrate (glass, ceramic or metallic) coated on at least one of its surface with at least one mixed layer deposited by a sputtering under vacuum magnetically enhanced process is described. The layer comprising at least one antimicrobial agent mixed to binder material chosen amongst the metal oxides, oxynitrides, oxycarbides or nitrides. This substrate present antimicrobial properties, in particular bactericidal activity even when no thermal treatment has been applied. If a tempered and antimicrobial glass is required, the same co-sputtering process can be used, optionally an underlayer can be added. Antimicrobial properties are maintained even after a tempering process.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: June 3, 2014
    Assignee: AGC Glass Europe
    Inventors: Georges Pilloy, Andre Hecq, Kadosa Hevesi, Nadia Jacobs
  • Patent number: 8734954
    Abstract: A transparent porous SiO2-coating for a transparent substrate material has improved optical properties. These properties can be obtained, in particular, by plasma treatment.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 27, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Florian Eder
  • Patent number: 8728634
    Abstract: A transparency includes a substrate having a first major surface and a second major surface. A first coating is provided over at least a portion of the first major surface, the first coating including one or more metal oxide layers. A second coating is provided over at least a portion of the second major surface, the second coating including one or more metallic layers.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: May 20, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Paul A. Medwick, James P. Thiel, Andrew V. Wagner
  • Patent number: 8728636
    Abstract: A low-e insulating glass unit has a suspended, coated IR reflecting polymer sheet under tension, e.g. from heat shrinkage. The polymer sheet is coated with a multilayer stack of dielectric and metallic layers, including at least one silver layer deposited upon a zinc oxide seed layer that is at most 15 nm thickness. The use of zinc oxide ensures good seeding for high quality silver layer growth, thereby providing low emissivity. The thinness of the zinc oxide ensures that it resists cracking when the polymer sheet is tensioned.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 20, 2014
    Assignee: Southwall Technologies Inc.
    Inventors: Ronny Kleinhempel, Julius G. Kozak, Roland C. Thielsch, Richard T. Wipfler, Christian H. Stoessel, Lee C. Boman
  • Patent number: 8728635
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8722210
    Abstract: The present invention relates to low emissivity glass and to a method for manufacturing the same. The low emissivity glass comprises: a low emissivity layer; and a dielectric layer formed on the low emissivity layer, wherein the glass has an emissivity of 0.01 to 0.3 and a visible transmittance of 70% or more. According to the present invention, low emissivity glass having good emissive performance while also exhibiting high visible transmittance can be provided. Further, according to the present invention, the manufacturing process for the above-described low emissivity glass can be simplified, and initial investment amount can be reduced.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 13, 2014
    Assignee: LG Hausys, Ltd.
    Inventors: Youn-Ki Jun, Keum-Shil Cho, Il Joon Bae, Sung Seock Hwang
  • Patent number: 8709604
    Abstract: Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 29, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Bernd Disteldorf, Marcus Frank, Richard Blacker
  • Patent number: 8703295
    Abstract: A glass material for mold pressing, comprised of a core portion and a covering portion. In one embodiment, the core portion comprises a multicomponent optical glass containing at least one readily reducible component selected from among W, Ti, Bi, and Nb and the covering portion comprises a multicomponent glass containing none or a lower quantity of the readily reducible component than is contained in the core portion. In another embodiment, the core portion comprises a fluorine-containing multicomponent optical glass, and the covering portion comprises a multicomponent glass containing none or a lower quantity of fluorine than is contained in the core portion. A method for manufacturing an optical glass element employing the above glass material that comprises heat softening a glass material that has been preformed into a prescribed shape, and conducting press molding with a pressing mold.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: April 22, 2014
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Yasuhiro Fujiwara, Hiroshi Kohno, Kohichiro Shiraishi
  • Patent number: 8697242
    Abstract: The invention provides a glass member provided with a sealing material layer, which suppresses generation of failures such as cracks or breakage of glass substrates or a sealing layer even when the distance between two glass substrates is narrowed, and thereby makes it possible to improve the sealing property between the glass substrates and its reliability. A glass substrate has a surface provided with a sealing region, on which a sealing material layer having a thickness of at most 15 ?m is formed. The sealing material layer includes a fired material of a glass material for sealing containing a sealing glass, a laser absorbent and optionally a low-expansion filler, wherein the total content of the laser absorbent and the low-expansion filler being the optional component in the glass material for sealing is within the range of from 2 to 44 vol %.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: April 15, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Sohei Kawanami, Atsuo Hiroi
  • Patent number: 8685544
    Abstract: A coating and associated method for coating is disclosed. The coating provides a hard, transparent, UV blocking coating for a substrate. A UV blocking layer is first deposited upon the substrate, and a hard coating is deposited above the UV blocking layer. A soft coating layer may be deposited between the UV blocking layer and the hard coating. The soft and hard coating layers may both have the general composition SiOxCy. the soft and hard coating layers may be deposited by a plasma vapor deposition process.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: April 1, 2014
    Assignee: The Boeing Company
    Inventors: Kjersta L. Larson-Smith, Vasan S. Sundaram, David A. Bowen