Patents Examined by Lauren Colgan
  • Patent number: 8679631
    Abstract: A tempered glass substrate of the present invention is a tempered glass substrate, which has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 71% of SiO2, 3 to 21% of Al2O3, 0 to 3.5% of Li2O, 7 to 20% of Na2O, and 0 to 15% of K2O.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 25, 2014
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata
  • Patent number: 8679634
    Abstract: Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 25, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Bernd Disteldorf, Marcus Frank, Richard Blacker
  • Patent number: 8679633
    Abstract: Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 25, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Bernd Disteldorf, Marcus Frank, Richard Blacker
  • Patent number: 8673461
    Abstract: A process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66%? MgO 3-8% Na2O 7-15%? K2O 0-3% Li2O 0-12%? CaO 0-10%? BaO 0-15%? Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The reinforced glass-ceramics obtained by the process.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: March 18, 2014
    Assignee: Eurokera S.N.C.
    Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
  • Patent number: 8664310
    Abstract: The present disclosure may provide a mixture for use in forming a transparent coating including a silicon alkoxide precursor and an organic polymer. The silicon alkoxide precursor may have a pH level between 1 and 4. The organic polymer may have an average molecular weight between 5,000 and 50,000 Da. The mixture may include 35% to 65% organic polymer by volume. The organic polymer may be removed from the mixture after application leaving a resultant transparent coating, wherein: the resultant coating has a porosity of ?35% to ?65%; a thickness in the range from ?95 nm to ?135 nm; pores having an average diameter from ?5 nm to ?50 nm; and a diameter distribution according to a log-norm distribution with a half-width of ?10 nm.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: March 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Anett Berndt, Florian Eder, Hans-Dieter Feucht
  • Patent number: 8652639
    Abstract: A method for strengthening glass and a glass using the same are provided. The method for strengthening glass includes the following steps. Firstly, a glass substrate, which has a first surface and a second surface opposite to the first surface, is provided. Next, a barrier film is formed on at least one of the first surface and the second surface. Then, the glass substrate with the barrier film is immersed in a strengthening solution. The strengthening solution includes first ions, and the barrier film can limit the first ions in the quantity entering the glass substrate.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 18, 2014
    Assignees: Dongguan Masstop Liquid Crystal Display Co., Ltd., Wintek Corporation
    Inventors: Guan-Yeu Chu, Chin-Hsun Ho, Ming-Wu Chen, Yu-Ching Wang, Cheng-Ying Lin, Chin-Chu Hung
  • Patent number: 8642175
    Abstract: A glass substrate chemically strengthened, includes a primary surface that has a compressive stress layer formed in an uppermost surface layer thereof. The compressive stress layer is configured to enhance strength of the glass substrate due to a compressive stress generated in the compressive stress layer. The compressive layer consists of a layer of a potassium ion concentration equal to or less than 5000 parts per million (ppm).
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: February 4, 2014
    Assignee: HOYA Corporation
    Inventors: Kazuaki Hashimoto, Yoshikazu Hirose
  • Patent number: 8637169
    Abstract: A low emissivity and EMI shielding transparent composite film typically for use in association with window glazing and comprising a transparent film substrate having on one side thereof an underlayer of abrasion resistant hardcoat material with at least one infrared reflective layer covering the underlayer, typically a metallic layer which may be encased in metal oxide layers, which is then covered with a thin external protective top coat of a cured fluorinated resin.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 28, 2014
    Assignee: CPFilms Inc.
    Inventors: Charles N. Van Nutt, James P. Enniss, Jaime A. Li, Anthony B. Port, Scott E. Pickett, Jeremy B. Stegall, Coby L. Hubbard, Rita M. Phillips, Steven A. Barth
  • Patent number: 8632886
    Abstract: A vehicle glazing comprises a pane of tinted glass, tinted by at least 1.0 to 1.8% wt. of total iron, having a low emissivity coating on its interior surface. The coating has an emissivity from 0.05 to 0.4 and may include a transparent conductive oxide (and optionally a dopant), or a metal layer and at least one dielectric layer. The glass is preferably toughened glass. According to another aspect, a laminated glazing includes two plies of glass, with a sheet of interlayer material laminated between the two glass plies, and wherein at least one ply of glass or the sheet of interlayer material is body tinted. The glazing has a low emissivity coating on its interior surface, the inner ply may be clear glass or tinted glass, and the interlayer material may be clear PVB or tinted PVB, and may further be infra-red reflecting. Either of the glazings may be used as a roof or other vehicle glazing.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: January 21, 2014
    Assignees: Pilkington PLC, Pilkington Automotive Limited
    Inventors: Neil Barton, Ashley Carl Torr
  • Patent number: 8632895
    Abstract: Coated articles comprising a decorative metal substrate and a transparent cured coating thereon containing inorganic particles in which the concentration of particles in the exposed surface region of the cured coating is greater than the bulk region of the coating. Preferably, the transparent coating is applied by electrodeposition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 21, 2014
    Assignee: PPG Industries Ohio, Inc
    Inventors: James E. Poole, Anthony D. Kulfan, Raphael O. Kollah
  • Patent number: 8623526
    Abstract: Disclosed are a gradient bioceramic coating comprising a rare earth oxide, a broadband laser method for preparing the bioceramic coating, and the use of the bioceramic coating in the field of medical materials.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 7, 2014
    Assignee: Guizhou University
    Inventors: Qibin Liu, Wenfei Li, Ling Wu
  • Patent number: 8609260
    Abstract: A coated article is provided which may be heat treated (e.g., thermally tempered) in certain instances. In certain example embodiments, an interlayer of or including a metal oxide such as tin oxide is provided under an infrared (IR) reflecting layer so as to be located between respective layers comprising silicon nitride and zinc oxide. It has been found that the use of such a tin oxide inclusive interlayer results in significantly improved mechanical durability, thermal stability and/or haze characteristics.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 17, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourg de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jose Nunez-Regueiro, Anton Dietrich, Philip J. Lingle, Scott V. Thomsen, Hong Wang, Jean-Marc Lemmer, Nancy Bassett, Bryce Corsner
  • Patent number: 8603648
    Abstract: A reflective film laminate is provided with high productivity and at low cost in which a protective film with minimized pinholes is provided to improve the alkali resistance and warm water resistance of the reflective film laminate including a pure Al film or an Al-based alloy film so that a reflectivity reduction resulting from the elution or oxidization of the Al film in an alkaline or warm water environment is less likely to occur. The reflective film laminate of the present invention includes, over a substrate, a pure Al film or an Al-based alloy film as a first layer, and an oxide film of a metal containing one or more elements selected from the group consisting of Zr, Cr, Y, Nb, Hf, Ta, W, Ti, Si, and Mo as a second layer over the first layer. The thickness of the second layer is 0.1 to 10 nm.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: December 10, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Sho Katsura, Nobuhiro Kobayashi, Jun Suzuki, Toshiki Sato
  • Patent number: 8592041
    Abstract: Provided is a glass ceramic composition which can be fired at a temperature of 1000° C. or lower, and a sintered body of which has a low relative permittivity and a high Q value, stable temperature characteristic and high reliability, and is excellent in plating solution resistance. The glass ceramic composition provides a low dielectric constant layer for inclusion in a laminate glass ceramic substrate in a ceramic multilayer module. It includes a first ceramic having forsterite as the main constituent, a second ceramic having at least one of SrTiO3 and TiO2 as the main constituent, a third ceramic having BaZrO3 as the main constituent, a fourth ceramic having at least one of ZrO2 and MnO as the main constituent, and 3 weight % or more of a borosilicate glass containing Li2O, MgO, B2O3, SiO2 and ZnO, which further contains an additive constituent including at least one of CaO and SrO.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroshige Adachi, Sadaaki Sakamoto
  • Patent number: 8592059
    Abstract: A plasma display panel (PDP) includes a frameless EMI filter supported by a glass substrate for blocking/shielding substantial amounts of electromagnetic waves, with the filter being supported by a side of the substrate opposite a viewer. In certain example embodiments, the PDP filter includes a transparent conductive coating (TCC) for electromagnetic interference (EMI) and near infrared (NIR) blocking without the need for a conductive, peripheral buss bar. Additionally, in certain example embodiments, the need for a conductive frame is reduced or eliminated. The filter has high visible transmission, and is capable of blocking/shielding electromagnetic waves.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 26, 2013
    Assignee: Guardian Industries Corp.
    Inventors: Philip J. Lingle, Willem Den Boer
  • Patent number: 8586166
    Abstract: A ceramic porous sintered body including a plurality of ceramic coarse particles and a polycrystalline sintered body forming a bonding layer. The bonding layer exists between the ceramic coarse particles and connects the ceramic coarse particles. The polycrystalline sintered body includes a plurality of ceramic fine particles having an average particle size smaller than the ceramic coarse particles. The ceramic porous sintered body has an average pore diameter of 5 ?m to 50 ?m. A ratio of an average particle size of the ceramic coarse particle to the ceramic fine particles is 15:1-200:1.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 19, 2013
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Hiroki Sato
  • Patent number: 8586215
    Abstract: Disclosed is a coated transparent pane that is part of a multiple-pane insulating glazing unit. The unit has a between-pane space to which the second major surface of the coated pane is exposed. The second major surface bears a low-emissivity coating, which includes in sequence a first dielectric film region, a first infrared-reflection film region, a second dielectric film region, a second infrared-reflection film region, a third dielectric film region, a third infrared-reflection film region, and a fourth dielectric film region.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: November 19, 2013
    Assignee: Cardinal CG Company
    Inventor: Klaus Hartig
  • Patent number: 8574718
    Abstract: A substrate having a coating is disclosed. The coating is formed of a plurality of layers. At least one of the layers includes a super alloy and at least two additional layers including silver. A coating for a substrate is also disclosed. A method of applying a coating to a substrate is further disclosed.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 5, 2013
    Assignee: Apogee Enterprises, Inc.
    Inventor: Randy Leland Stull
  • Patent number: 8568890
    Abstract: A watch cover glass having high hardness and excellent abrasion, and also having flaw resistance and antireflection function even after being used for a long period of time. The watch cover glass comprises a transparent substrate and, provided on at least one surface of the substrate, an antireflection film having a lamination structure that a SiON film (SiO2 and Si3N4 mixed film) and a Si3N4 film are laminated and the outermost layer is the SiON film. Accordingly, the proper antireflection effect can be obtained, the hardness of the antireflection film is increased and the abrasion resistance is remarkably increased. As a result, even after being used for a long period of time, the surface of the antireflection film is not finely flawed and is not peeled off, and it hardly occurs that the hands or dial plate are invisible due to surface mist and the antireflection function can be maintained.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: October 29, 2013
    Assignee: Citizen Holdings Co., Ltd.
    Inventors: Yasushi Murata, Koutarou Takazaki
  • Patent number: 8557391
    Abstract: Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 15, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Marcus Frank, Anton Dietrich, Greg Miller, Richard Blacker, Muhammad Imran, Jean-Marc Lemmer