Patents Examined by Lauren Colgan
  • Patent number: 8409717
    Abstract: Example embodiments of this invention relate to a coated article including an infrared (IR) reflecting layer of a material such as silver or the like, for use in an insulating glass (IG) window unit for example. In certain example embodiments, the coating is a single-silver type coating, and includes an overcoat including an uppermost layer of or including silicon nitride and a layer of or including tin oxide immediately under and contacting the silicon nitride based overcoat. In certain example embodiments, the thicknesses of the silicon nitride based overcoat and the tin oxide based layer are balanced (e.g., substantially equal, or equal plus/minus about 10%). It has surprisingly been found that such balancing results in an improvement in thermal cycling performance and improved mechanical durability. In certain example embodiments, the coating may realize surprisingly good substantially neutral film side reflective coloration, and may achieve an improved visible transmission, SHGC ratio and low U-values.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: April 2, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Patent number: 8409716
    Abstract: The invention in general relates to glass or glass-ceramic products. In order to protect the surface of such products against scratching, a silicon oxynitride coating with special composition is provided.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 2, 2013
    Assignee: Schott AG
    Inventors: Niko Schultz, Christian Henn, Falk Gabel, Andreas Hahn
  • Patent number: 8399107
    Abstract: In one embodiment, a composition (10) to be mixed with a molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (12), the ceramic reinforcing filler not being wettable by molten aluminum and/or not being chemically stable in molten aluminum, the ceramic reinforcing filler being coated with a ceramic material, the ceramic material being wettable by and chemically stable in molten aluminum. In a related embodiment, a composition (20) to make a porous preform to be infiltrated by molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (23), the ceramic reinforcing filler not being wettable by molten aluminum, the ceramic reinforcing filler being coated with a ceramic material (22) and optionally with a metal (21) such as nickel, the ceramic material being wettable by molten aluminum.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: March 19, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Aleksander J. Pyzik, Ted A. Morgan, Terry I. Hu, Daniel R. Lister, Robert A. Newman, Richard Allen Lundgard, Qin Deng
  • Patent number: 8389135
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8377567
    Abstract: A porous metal member composed of an alloy at least containing nickel and tungsten is provided. The alloy may contain 50 to 80 wt % of nickel and 20 to 50 wt % of tungsten and may further contain 10 wt % or less of phosphorus and/or 10 wt % or less of boron. Such a porous metal member can be produced by, for example, making a porous base such as a urethane foam be electrically conductive, forming an alloy film containing nickel and tungsten, then removing the porous base from the alloy film, and subsequently reducing the alloy.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: February 19, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Hidetoshi Saito, Keiji Shiraishi, Hitoshi Tsuchida, Junichi Nishimura
  • Patent number: 8377577
    Abstract: Coated articles comprising a decorative metal substrate and a transparent cured coating thereon containing inorganic particles in which the concentration of particles in the exposed surface region of the cured coating is greater than the bulk region of the coating. Preferably, the transparent coating is applied by electrodeposition.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: February 19, 2013
    Assignee: PPG Industries Ohio, Inc.
    Inventors: James E. Poole, Anthony D. Kulfan, Raphael O. Kollah
  • Patent number: 8377578
    Abstract: An infrared radiation reflecting transparent layer system on a transparent substrate and a method for producing same is provided. The infrared radiation reflecting layer system comprises an infrared radiation reflecting layer sequence which includes a selective function usually consisting of a noble metal, mostly silver, or an alloy thereof and having a good selective reflectivity in the infrared range. The layer sequence is supplemented by at least one transparent dielectric layer of an oxynitride of a metal, a semiconductor or a semiconductor alloy having a low to moderate refractive index arranged directly on the substrate or above the infrared radiation reflecting layer sequence.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: February 19, 2013
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventors: Christoph Koeckert, Holger Proehl, Falk Milde
  • Patent number: 8372513
    Abstract: The subject of the invention is a transparent substrate (6) having at least one antireflection coating, made from a film (A) comprising multiple thin layers of alternately high and low refractive indexes. The multilayer film comprises, in succession, a high-index first layer (1), having a refractive index n1 of between 1.8 and 2.3 and a geometrical thickness e1 of between 5 and 50 nm, a low-index second layer (2), having a refractive index n2 of between 1.30 and 1.70 and a geometrical thickness e2 of between 5 and 50 nm, a high-index third layer (3), having a refractive index n3 of between 1.8 and 2.3 and a geometrical thickness e3 of at least 100 nm, and a low-index fourth layer (4), having a refractive index n4 of between 1.30 and 1.70 and a geometrical thickness e4 of at least 80 nm. This antireflection coating can be used in solar modules.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: February 12, 2013
    Assignee: Saint-Gobain Glass France
    Inventors: Charles Anderson, Ulf Blieske
  • Patent number: 8367191
    Abstract: Optical thin-films are disclosed that are formed from optical thin films formed on a base plate arranged in a vacuum chamber. The base plates are held on a plurality of retaining frames of a base-plate retainer. The thin films are formed by heating the base plate and emitting a deposition material from a deposition source. The retaining frames are configured to make the entire base plate uniformly heated.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 5, 2013
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Shinya Kikegawa, Toshimasa Nishi, Motoo Takada
  • Patent number: 8367208
    Abstract: The invention is directed to a high strength, chemically toughened protective glass article, the glass article having a high damage tolerance threshold of at least 1500 g as measured by the lack of radial cracks when the load is applied to the glass using a Vickers indenter; preferably greater than 2000 g s measured by the lack of initiation of radial cracks when the load is applied to the glass using a Vickers indenter.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: February 5, 2013
    Assignee: Corning Incorporated
    Inventors: Gregory Scott Glaesemann, James Joseph Price, Robert Sabia, Nagaraja Shashidhar
  • Patent number: 8367226
    Abstract: A layer system that can be annealed comprises a transparent substrate, preferably a glass substrate, and a first layer sequence which is applied directly to the substrate or to one or more bottom layers that are deposited onto the substrate. The layer sequence includes a substrate-proximal blocking layer, a selective layer and a substrate-distal blocking layer. Also provided is a method for producing a layer system that can be annealed and has a sufficient quality even under critical climatic conditions and/or undefined conditions of the substrate. During the heat treatment (annealing, bending), the color location of the layer system is maintained substantially stable and the color location can be widely varied at a low emissivity of the layer system. For this purpose, a first dielectric intermediate layer is interposed between the substrate-proximal blocking layer and the selective layer and is configured as a substoichiometric gradient layer.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: February 5, 2013
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventors: Joerg Fiukowski, Matthias List, Hans-Christian Hecht, Falk Milde
  • Patent number: 8357458
    Abstract: A coated article is provided which may be heat treated (e.g., thermally tempered) in certain instances. In certain example embodiments, an interlayer of or including a metal oxide such as tin oxide is provided under an infrared (IR) reflecting layer so as to be located between respective layers comprising silicon nitride and zinc oxide. It has been found that the use of such a tin oxide inclusive interlayer results in significantly improved mechanical durability, thermal stability and/or haze characteristics.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: January 22, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jose Nunez-Regueiro, Anton Dietrich, Philip J. Lingle, Scott V. Thomsen, Hong Wang, Jean-Marp Lemmer, Nancy Bassett, Bryce Corsner
  • Patent number: 8354178
    Abstract: There is provided a method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. For example, certain embodiments of this invention relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least a layer of or including diamond-like carbon (DLC) and an overlying protective film thereon. In certain example embodiments, the protective film may be of or include an oxide of zinc. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be removed. Other embodiments of this invention relate to the pre-HT coated article, or the post-HT coated article.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: January 15, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourg de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Nestor P. Murphy, Maximo Frati, Rudolph Hugo Petrmichl, Jiangping Wang, Jens-Peter Muller, Herbert Lage
  • Patent number: 8329304
    Abstract: A plasma display panel (PDP) includes an EMI filter supported by a glass substrate for blocking/shielding substantial amounts of electromagnetic waves, with the filter being supported by a side of the substrate opposite a viewer. In certain example embodiments, a black frit and a silver frit comprise a filter frame and are supported by the filter such that the filter is closer to the glass substrate than either or both of the frits. Alternatively, in certain example embodiments, a conductive black frit comprises a filter frame and is supported by the filter such that the filter is closer to the glass substrate than the frit. The filter has high visible transmission, and is capable of blocking/shielding electromagnetic waves. Advantageously, a transparent conductive coating (TCC) can be coated on a stock, non-cut glass sheet.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: December 11, 2012
    Assignee: Guardian Industries Corp.
    Inventors: Yei-Ping (Mimi) H. Wang, Brandon Bolt