Patents Examined by Luz Alejandro
  • Patent number: 9896769
    Abstract: A plasma reactor enclosure has a metallic portion and a dielectric portion of plural dielectric windows supported on the metallic portion, each of the dielectric windows extending around an axis of symmetry. Plural concentric coil antennas are disposed on an external side of the enclosure, respective ones of the coil antennas facing respective ones of the dielectric windows.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: February 20, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, Jr., Ankur Agarwal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Patent number: 9885493
    Abstract: A processing chamber and a Faraday shield system for use in a plasma processing chambers are provided. One system includes a disk structure defining a Faraday shield, and the disk structure has a process side and a back side. The disk structure extends between a center region to a periphery region. The disk structure resides within the processing volume. The system also includes a hub having an internal plenum for passing a flow of air received from an input conduit and removing the flow of air from an output conduit. The hub has an interface surface that is coupled to the back side of the disk structure at the center region. A fluid delivery control is coupled to the input conduit of the hub. The fluid delivery control is configured with a flow rate regulator. The regulated air can be amplified or compressed dry air (CDA).
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: February 6, 2018
    Assignee: Lam Research Corporation
    Inventors: Saravanapriyan Sriraman, John Drewery, Jon McChesney, Alex Paterson
  • Patent number: 9870897
    Abstract: A plasma reactor has an overhead inductively coupled plasma source with two coil antennas and symmetric and radial RF feeds and cylindrical RF shielding around the symmetric and radial RF feeds. The radial RF feeds are symmetrically fed to the plasma source.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 16, 2018
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Kenneth S. Collins, Richard Fovell, Jason A. Kenney, Kartik Ramaswamy, Shahid Rauf
  • Patent number: 9824863
    Abstract: A plasma technique in which a plasma generation technique frequently used in various fields including a semiconductor manufacturing process is used, and generation of plasma instability (high-speed impedance change of plasma) can efficiently be suppressed and controlled in order to manufacture stable products. An apparatus includes a processing chamber, a surrounding member disposed so as to surround the processing chamber, an RF induction coil disposed above the top surface, a direct-current magnetic field generator for supplying a direct-current magnetic field to the inner space, and an RF cut filter connected to a direct current (DC) power supply and connected to the direct-current magnetic field generator. The RF cut filter includes a first capacitor connected to a positive terminal of the DC power supply and to ground, and a second capacitor connected to a negative terminal of the DC power supply and to ground.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: November 21, 2017
    Assignee: Lam Research Corporation
    Inventors: Takumasa Nishida, Shu Nakajima
  • Patent number: 9745663
    Abstract: A plasma reactor has an overhead multiple coil inductive plasma source with symmetric RF feeds and a symmetrical chamber exhaust with plural struts through the exhaust region providing access to a confined workpiece support. A grid may be included for masking spatial effects of the struts from the processing region.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: August 29, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, Jr., Ankur Agarwal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Patent number: 9741538
    Abstract: Linear coils, a first ceramic block, and a second ceramic block are arranged in an inductively-coupled plasma torch. A chamber has an annular shape. Plasma generated inside the chamber is ejected to a substrate through an opening portion in the chamber. The substrate is processed by relatively moving the chamber and the substrate in a direction perpendicular to a longitudinal direction of the opening portion. The coil is arranged inside a rotating cylindrical ceramic pipe. Accordingly, the plasma can be generated with excellent power efficiency, and fast plasma processing can be performed.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: August 22, 2017
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Tomohiro Okumura, Satoshi Suemasu
  • Patent number: 9704609
    Abstract: Provided is an ion exchange resin volume reduction apparatus in which the ignition of plasma is facilitated and the plasma is prevented from extinguishing. A volume reduction apparatus according to aspects of the present invention includes a stage carrying thereon a resin to be treated, a CCP power source, and an ICP power source. The volume reduction apparatus according to a certain aspect of the present invention is provided with a supply mechanism, and the CCP power source continues operating when the resin to be treated is supplied in a depressurized state to a vacuum vessel. In the volume reduction apparatus according to a certain aspect of the present invention, the CCP power source continues operating when a gas condition under which gas is supplied into the vacuum vessel is changed.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 11, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Gen-ichi Katagiri
  • Patent number: 9591738
    Abstract: Systems and methods of forming plasma are provided. In an embodiment, a plasma generator system is provided including a container, a single coil disposed around the container, the single coil being a single member and having a first end, a second end, a first winding, and a second winding, wherein the first winding extends from the first end, and the second winding is integrally formed as part of the first winding and extends to the second end, an energy source electrically coupled directly to the first end of the single member, and a capacitor electrically coupled directly to the second end of the single member.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: March 7, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Huatan Qiu, David Cheung, Prashanth Kothnur
  • Patent number: 9583312
    Abstract: A film formation device to conduct a film formation process for a substrate includes a rotating table, a film formation area configured to include a process gas supply part, a plasma processing part, a lower bias electrode provided at a lower side of a position of a height of the substrate on the rotating table, an upper bias electrode arranged at the same position of the height or an upper side of a position of the height, a high-frequency power source part connected to at least one of the lower bias electrode and the upper bias electrode and configured to form a bias electric potential on the substrate in such a manner that the lower bias electrode and the upper bias electrode are capacitively coupled, and an exhaust mechanism.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: February 28, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Chishio Koshimizu, Yohei Yamazawa, Mitsuhiro Tachibana, Hitoshi Kato, Takeshi Kobayashi, Shigehiro Miura, Takafumi Kimura
  • Patent number: 9552965
    Abstract: The present invention discloses an inductively coupled coil and an inductively coupled plasma device using the same. The inductively coupled coil comprises an internal coil and an exterior coil which are respective from each other and coaxially arranged, internal coil comprising a plurality of internal respective branches having the same configurations which are nested together, the plurality of internal respective branches being arranged symmetrically with respect to an axis of the inductively coupled coil; the external coil comprising a plurality of external respective branches having the same configurations which are nested together, the plurality of external respective branches being arranged symmetrically with respect to the axis of the inductively coupled coil. The inductively coupled coil is located on the reaction chamber of the inductively coupled plasma device and is connected to a RF source.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: January 24, 2017
    Assignee: BEIJING NMC CO., LTD.
    Inventors: Qiaoli Song, Jianhui Nan
  • Patent number: 9543121
    Abstract: An inductively coupled plasma processing apparatus performs plasma processing on a substrate by generating an inductively coupled plasma in a plasma generation region in a processing chamber. The apparatus includes a high frequency antenna for generating the inductively coupled plasma in the plasma generation region and a metal window provided between the plasma generation region and the high frequency antenna. The metal window is firstly divided into two or more sections electrically insulated from each other by a line along a peripheral direction of the metal window and then secondly divided into sections electrically insulated from each other by lines along directions crossing with the peripheral direction.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: January 10, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kazuo Sasaki, Toshihiro Tojo
  • Patent number: 9530656
    Abstract: Systems, methods, and computer programs are presented for controlling the temperature of a window in a semiconductor manufacturing chamber. One apparatus includes an air amplifier, a plenum, a heater, a temperature sensor, and a controller. The air amplifier is coupled to pressurized gas and generates, when activated, a flow of air. The air amplifier is also coupled to the plenum and the heater. The plenum receives the flow of air and distributes the flow of air over a window of the plasma chamber. When the heater is activated, the flow of air is heated during processing, and when the heater is not activated, the flow of air cools the window. The temperature sensor is situated about the window of the plasma chamber, and the controller is defined to activate both the air amplifier and the heater based on a temperature measured by the temperature sensor.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: December 27, 2016
    Assignee: Lam Research Corporation
    Inventors: Jon McChesney, Alex Paterson
  • Patent number: 9520275
    Abstract: A chemical processing system and a method of using the chemical processing system to treat a substrate with a mono-energetic space-charge neutralized neutral beam-activated chemical process is described. The chemical processing system comprises a first plasma chamber for forming a first plasma at a first plasma potential, and a second plasma chamber for forming a second plasma at a second plasma potential greater than the first plasma potential, wherein the second plasma is formed using electron flux from the first plasma. Further, the chemical processing system comprises a substrate holder configured to position a substrate in the second plasma chamber.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: December 13, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Lee Chen
  • Patent number: 9496121
    Abstract: Provided is a substrate treating apparatus, which includes a process chamber having an inner space, a substrate support part disposed within the process chamber, and supporting a substrate, a gas supply part supplying a process gas into the process chamber, an antenna configured to supply high frequency power into the process chamber to excite the process gas within the process chamber, and a driving part varying a size of the antenna.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: November 15, 2016
    Assignee: Semes Co., Ltd.
    Inventors: Hyung Joon Kim, Hyung Je Woo
  • Patent number: 9472378
    Abstract: A low inductance coil antenna for a plasma reactor has multiple radial zones of plural conductor lobes extending radially from respective RF supply and ground rings.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 18, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Vladimir Knyazik, Samer Banna, Kyle R. Tantiwong
  • Patent number: 9453280
    Abstract: A film deposition apparatus includes a turntable having a substrate mounting area, a first plasma gas supplying part, a second plasma supplying part, a first plasma gas generating part to convert the first plasma generating gas to first plasma, and a second plasma generating part provided away from the first plasma generating part in a circumferential direction and to convert the second plasma generating gas to second plasma. The first plasma generating part includes an antenna facing the turntable so as to convert the first plasma generating gas to the first plasma, and a grounded Faraday shield between the antenna and an area where a plasma process is performed, and to include plural slits respectively extending in directions perpendicular to the antenna and arranged along an antenna extending direction to prevent an electric field from passing toward the substrate and to pass a magnetic field toward the substrate.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: September 27, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hitoshi Kato, Katsuyuki Hishiya, Shigehiro Ushikubo
  • Patent number: 9447518
    Abstract: A radical generator includes a supply tube, a plasma-generating tube, a coil winding about an outer circumference of the plasma-generating tube, for generating an inductively coupled plasma in the plasma-generating tube, an electrode for generating a capacitively coupled plasma in the plasma-generating tube and adding the capacitively coupled plasma to the inductively coupled plasma, and a parasitic-plasma-preventing tube including a dielectric material which extends from a bottom of the plasma-generating tube to an opening of the supply tube in a space between the bottom and the opening, and a tip part thereof is inserted into the supply tube to cover an inner wall of the supply tube for preventing a generation of a parasitic plasma between the electrode and the inner wall of the supply tube.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: September 20, 2016
    Assignees: National University Corporation Nagoya University, NU ECO Engineering Co., Ltd., Katagiri Engineering Co., Ltd.
    Inventors: Masaru Hori, Hiroshi Amano, Hiroyuki Kano, Shoji Den, Koji Yamakawa
  • Patent number: 9437400
    Abstract: An insulated dielectric window assembly comprising a dielectric window of an inductively coupled plasma processing apparatus; an upper polymeric ring, and a lower polymeric ring. The upper polymeric ring insulates the outer edge of the dielectric window from a cooler ambient atmosphere and the lower polymeric ring insulates the lower surface of the dielectric window from a chamber surface supporting the window.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 6, 2016
    Assignee: Lam Research Corporation
    Inventors: David Setton, Gautam Bhattacharyya, Brett C. Richardson
  • Patent number: 9431216
    Abstract: An ICP A plasma reactor having an enclosure wherein at least part of the ceiling forms a dielectric window. A substrate support is positioned within the enclosure below the dielectric window. An RF power applicator is positioned above the dielectric window to radiate RF power through the dielectric window and into the enclosure. A plurality of gas injectors are distributed uniformly above the substrate support to supply processing gas into the enclosure. A circular baffle is situated inside the enclosure and positioned above the substrate support but below the plraity of gas injectors so as to redirect the flow of the processing gas.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: August 30, 2016
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC, SHANGHAI
    Inventors: Songlin Xu, Gang Shi, Tuqiang Ni
  • Patent number: 9412563
    Abstract: An RF plasma source has a resonator with its shorted end joined to the processing chamber ceiling and inductively coupled to two arrays of radial toroidal channels in the ceiling, the resonator having two radial zones and the two arrays of toroidal channels lying in respective ones of the radial zones.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: August 9, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik Ramaswamy, Kenneth S. Collins, Shahid Rauf, Steven Lane, Yang Yang, Lawrence Wong