Patents Examined by Luz Alejandro
  • Patent number: 9384948
    Abstract: The chamber, having a ceramic window disposed in a ceiling of the chamber is provided. Included is a ceramic support having a plurality of spokes that extend from a center region to an outer periphery, and each of the spokes include a hammerhead shape that radially expands the ceramic support in a direction that is away from an axis of a spoke. Also included is a plurality of screw holes disposed through the ceramic support. The plurality of screw holes defined to enable screws to connect to a TCP coil having an inner and outer coil. The outer coil is to be disposed under the hammerhead shape of each of the spokes, and a radial gap is defined between each of the hammerhead shapes. The radial gap defines a non-continuous ring around the outer coil. A plurality of screws are disposed through the screw holes for attaching the TCP coil.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: July 5, 2016
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Alex Paterson
  • Patent number: 9378930
    Abstract: Embodiments of the present invention generally provide an inductively coupled plasma (ICP) reactor having a substrate RF bias that is capable of control of the RF phase difference between the ICP source (a first RF source) and the substrate bias (a second RF source) for plasma processing reactors used in the semiconductor industry. Control of the RF phase difference provides a powerful knob for fine process tuning. For example, control of the RF phase difference may be used to control one or more of average etch rate, etch rate uniformity, etch rate skew, critical dimension (CD) uniformity, and CD skew, CD range, self DC bias control, and chamber matching.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: June 28, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael N. Grimbergen, Alan Hiroshi Ouye, Valentin N. Todorow
  • Patent number: 9362148
    Abstract: A shielded lid heater lid heater suitable for use with a plasma processing chamber, a plasma processing chamber having a shielded lid heater and a method for plasma processing are provided. The method and apparatus enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, a shielded lid heater is provided that includes an aluminum base and RF shield sandwiching a heater element.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 7, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael D. Willwerth, David Palagashvili, Valentin N. Todorow, Stephen Yuen
  • Patent number: 9336996
    Abstract: A plasma processing system for generating plasma to process a wafer. The plasma processing system includes a set of top coils for initiating the plasma, a set of side coils for affecting distribution of the plasma, and a chamber structure for containing the plasma. The chamber structure includes a chamber wall and a dielectric member. The dielectric member includes a top, a vertical wall, and a flange. The top is connected through the vertical wall to the flange, and is connected through the vertical wall and the flange to the chamber wall. The set of top coils is disposed above the top. The set of side coils surrounds the vertical wall. A vertical inner surface of the vertical wall is configured to be exposed to the plasma. The inner diameter of the vertical wall is smaller than the inner diameter of the chamber wall.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 10, 2016
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Alex Paterson
  • Patent number: 9313872
    Abstract: A plasma processing apparatus includes a processing chamber including a dielectric window; a coil shaped RF antenna provided outside the dielectric window; a substrate supporting unit, provided in the processing chamber, for mounting thereon a target substrate to be processed; a processing gas supply unit for supplying a desired processing gas to the processing chamber to perform a desired plasma process on the target substrate; and an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the processing chamber. The apparatus further includes a floating coil electrically floated and arranged at a position outside the processing chamber where the floating coil is to be coupled with the RF antenna by an electromagnetic induction; and a capacitor provided in a loop of the floating coil.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: April 12, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Chishio Koshimizu, Kazuki Denpoh, Jun Yamawaku, Masashi Saito
  • Patent number: 9305750
    Abstract: A plasma processing system for generating plasma to process at least a wafer. The plasma processing system may include a first coil for conducting a first current for sustaining at least a first portion of the plasma. The plasma processing system may also include a second coil for conducting a second current for sustaining at least a second portion of the plasma. The plasma processing system may also include a power source for powering the first current and the second current. The plasma processing system may also include a parallel circuit for adjusting one of the amperage of the first current and the amperage of the second current. The parallel circuit may be electrically coupled between the power source and at least one of the first coil and the second coil. The parallel circuit may include an inductor and a variable capacitor electrically connected in parallel to each other.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: April 5, 2016
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Seyed Jafar Jafarian-Tehrani
  • Patent number: 9293353
    Abstract: A Faraday shield and a plasma processing chamber incorporating the Faraday shield is are provided. The plasma chamber includes an electrostatic chuck for receiving a substrate, a dielectric window connected to a top portion of the chamber, the dielectric window disposed over the electrostatic chuck, and a Faraday shield. The Faraday shield is disposed inside of the chamber and defined between the electrostatic chuck and the dielectric window. The Faraday shield includes an inner zone having an inner radius range that includes a first and second plurality of slots and an outer zone having an outer radius range that includes a third plurality of slots. The inner zone is adjacent to the outer zone. The Faraday shield also includes a band ring separating the inner zone and the outer zone, such that the first and second plurality of slots do not connect with the third plurality of slots.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 22, 2016
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Alex Paterson, Ricky Marsh, Ying Wu, John Drewery
  • Patent number: 9293299
    Abstract: In an inductively coupled plasma processing apparatus, it is possible to control a plasma density distribution while suppressing a wavelength effect within a RF antenna. Provided at a ceiling of a chamber 10 or above a dielectric window 52 is a circular ring-shaped RF antenna 54 for generating inductively coupled plasma within the chamber 10. This RF antenna 54 includes two coil segments 84(1) and 84(2) each having a semicircular arc shape. The coil segments 84(1) and 84(2) are electrically connected to each other in parallel with respect to a high frequency power supply unit 62. On the dielectric window 52, a circular ring-shaped floating coil 60 having a variable capacitor 58 coupled to the RF antenna 54 by an electromagnetic induction is provided. The variable capacitor 58 is varied in a certain range by a capacitance varying unit 82 under the control of a main controller 80.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: March 22, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Yohei Yamazawa
  • Patent number: 9287093
    Abstract: Embodiments described herein provide apparatus and methods of etching a substrate using an ion etch chamber having a movable aperture. The ion etch chamber has a chamber body enclosing a processing region, a substrate support disposed in the processing region and having a substrate receiving surface, a plasma source disposed at a wall of the chamber body facing the substrate receiving surface, an ion-radical shield disposed between the plasma source and the substrate receiving surface, and a movable aperture member between the ion-radical shield and the substrate receiving surface. The movable aperture member is actuated by a lift assembly comprising a lift ring and lift supports from the lift ring to the aperture member. The ion-radical shield is supported by shield supports disposed through the aperture member. The aperture size, shape, and/or central axis location may be changed using inserts.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: March 15, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Graeme Jamieson Scott, Ajay Kumar
  • Patent number: 9263237
    Abstract: The following description relates to a plasma processing apparatus and a method thereof. The plasma processing apparatus comprises a first plasma chamber having a first plasma discharge space, a first plasma source for supplying a first activation energy to the first plasma discharge space within the first plasma chamber, a second plasma chamber which is connected to the first plasma chamber and has a second discharge space, and a second plasma source for supplying a second activation energy for inducing inductive coupled plasma to the second plasma discharge space within the second plasma chamber.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 16, 2016
    Assignee: GEN CO., LTD.
    Inventor: Dae-Kyu Choi
  • Patent number: 9253867
    Abstract: A plasma processing apparatus includes: an evacuable processing chamber including a dielectric window; a substrate supporting unit, provided in the processing chamber, for mounting thereon a target substrate; a processing gas supply unit for supplying a desired processing gas to the processing chamber to perform a plasma process on the target substrate; a first RF antenna, provided on the dielectric window, for generating a plasma by an inductive coupling in the processing chamber; and a first RF power supply unit for supplying an RF power to the first RF antenna. The first RF antenna includes a primary coil provided on or above the dielectric window and electrically connected to the first RF power supply unit; and a secondary coil provided such that the coils are coupled with each other by an electromagnetic induction therebetween while being arranged closer to a bottom surface of the dielectric window than the primary coil.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 2, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Masashi Saito, Kazuki Denpoh, Chishio Koshimizu, Jun Yamawaku
  • Patent number: 9245761
    Abstract: The embodiments disclosed herein pertain to improved methods and apparatus for etching a semiconductor substrate. A plasma grid assembly is positioned in a reaction chamber to divide the chamber into upper and lower sub-chambers. The plasma grid assembly may include one or more plasma grids having slots of a particular aspect ratio, which allow certain species to pass through from the upper sub-chamber to the lower sub-chamber. Where multiple plasma grids are used, one or more of the grids may be movable, allowing for tenability of the plasma conditions in at least the lower sub-chamber. In some cases, an electron-ion plasma is generated in the upper sub-chamber. Electrons that make it through the grid to the lower sub-chamber are cooled as they pass through. In some cases, this results in an ion-ion plasma in the lower sub-chamber.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 26, 2016
    Assignee: Lam Research Corporation
    Inventors: Harmeet Singh, Thorsten Lill, Vahid Vahedi, Alex Paterson, Monica Titus, Gowri Kamarthy
  • Patent number: 9230782
    Abstract: Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: January 5, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Eiji Ikegami, Shoji Ikuhara, Takeshi Shimada, Kenichi Kuwabara, Takao Arase, Tsuyoshi Matsumoto
  • Patent number: 9232628
    Abstract: A system for processing a substrate may include a first chamber operative to define a first plasma and a second chamber adjacent the first chamber, where the second chamber is electrically isolated from the first chamber, and configured to define a second plasma. The system may also include an extraction assembly disposed between the first chamber and second chamber to provide at least plasma isolation between the first plasma and the second plasma, a substrate assembly configured to support the substrate in the second chamber; and a biasing system configured to supply a plurality of first voltage pulses to direct first ions from the first plasma through the second chamber towards the substrate during one time period, and to supply a plurality of second voltage pulses to generate the second plasma and to attract second ions from the second plasma during another time period.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: January 5, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Svetlana B. Radovanov, Ludovic Godet, Bon-Woong Koo
  • Patent number: 9214319
    Abstract: A plasma reactor and method for improved gas injection for an inductive plasma source for dry strip plasma processing are disclosed. According to embodiments of the present disclosure, gas is fed into a plasma chamber through a gas injection channel located adjacent to the side wall of the plasma chamber, rather than from the center, so that the process gas enters the plasma chamber in a close proximity to the induction coil. In particular embodiments, the process gas that enters the chamber is forced to pass through a reactive volume or active region adjacent the induction coil where efficient heating of electrons occurs, providing increased efficiency of the reactor by improving process gas flow and confinement in the heating area.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: December 15, 2015
    Assignee: Mattson Technology, Inc.
    Inventors: Vladimir Nagorny, Charles Crapuchettes
  • Patent number: 9165748
    Abstract: A plasma CVD method uses an electrode array in a reaction chamber, the electrode array including a plurality of inductively coupled electrodes, each electrode being folded back at the center so that each electrode is substantially U-shaped with two parallel straight portions, the electrodes are arranged such that all of the parallel straight portions are arranged parallel to each other in a common plane, each of the electrodes having at least a portion with a diameter of 10 mm or less, and a phase controlled power supply for feeding high frequency power to the feeding portions so as to establish a standing wave of a half wavelength or natural number multiple of a half wavelength between a feeding portion and a folded back portion and between a grounded portion and the folded back portion, and is controlled to have a phase difference between adjacent two feeding portions.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: October 20, 2015
    Assignee: IHI CORPORATION
    Inventors: Tomoko Takagi, Masashi Ueda
  • Patent number: 9155181
    Abstract: A plasma source includes a ring plasma chamber, a primary winding around an exterior of the ring plasma chamber and multiple ferrites, wherein the ring plasma chamber passes through each of the ferrites. A system and method for generating a plasma are also described.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: October 6, 2015
    Assignee: Lam Research Corporation
    Inventors: Ali Shajii, Richard Gottscho, Souheil Benzerrouk, Andrew Cowe, Siddharth P. Nagarkatti, William R. Entley
  • Patent number: 9137884
    Abstract: The present invention discloses an apparatus for plasma processing comprising of a chamber for plasma processing with an external wall, and at least one induction coil for providing a radio frequency induction field that is adjacent to the chamber. It further includes an end terminal of the induction coil that is connected to a radio frequency power supply, another end terminal of the induction coil that is open-ended, and a grounded terminal of the induction coil that is located at substantially central position of the induction coil.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: September 15, 2015
    Assignee: Lam Research Corporation
    Inventors: Georgy K. Vinogradov, Vladimir M. Menagarishvili
  • Patent number: 9051647
    Abstract: A tunable multi-zone injection system for a plasma processing system for plasma processing of substrates such as semiconductor wafers. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a gas injector fixed to part of or removably mounted in an opening in the dielectric window, the gas injector including a plurality of gas outlets supplying process gas at adjustable flow rates to multiple zones of the chamber, and an RF energy source such as a planar or non-planar spiral coil which inductively couples RF energy through the dielectric member and into the chamber to energize the process gas into a plasma state.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: June 9, 2015
    Assignee: Lam Research Corporation
    Inventors: David J. Cooperberg, Valid Vahedi, Douglas Ratto, Harmeet Singh, Neil Benjamin
  • Patent number: 9039865
    Abstract: The invention provides a plasma processing apparatus in which ring-like conductors 8a and 8b are arranged closed to and along an induction antenna 1 composed of an inner circumference coil 1a and an outer circumference coil 1b. Ring-like conductors 8a and 8b are each characterized in that the radius from the center of the apparatus and the cross-sectional shape of the conductor body varies along the circumferential angle of the coils. Since the mutual inductances between the ring-like conductors 8a and 8b and the induction antenna 1 and between the ring-like conductors 8a and 8b and the plasma along the circumferential position are controlled, it becomes possible to compensate for the coil currents varied along the circumference of the coils of the induction antenna 1, and to improve the non-uniformity in the circumferential direction of the current in the generated plasma.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: May 26, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Ken Yoshioka, Motohiko Yoshigai, Ryoji Nishio, Tadayoshi Kawaguchi