Patents Examined by Lynne A. Gurley
  • Patent number: 8470695
    Abstract: A semiconductor element of the electric circuit includes a semiconductor layer over a gate electrode. The semiconductor layer of the semiconductor element is formed of a layer including polycrystalline silicon which is obtained by crystallizing amorphous silicon by heat treatment or laser irradiation, over a substrate. The obtained layer including polycrystalline silicon is also used for a structure layer such as a movable electrode of a structure body. Therefore, the structure body and the electric circuit for controlling the structure body can be formed over one substrate. As a result, a micromachine can be miniaturized. Further, assembly and packaging are unnecessary, so that manufacturing cost can be reduced.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: June 25, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi
  • Patent number: 8471458
    Abstract: There is provided a light emitting device which includes a light emitting element having a main emission peak in the wavelength region of greater than 420 nm and equal to or less than 500 nm, and a phosphor layer formed on the light emitting element. The light emitting element of this light emitting device has a junction temperature of from 100° C. to 200° C. at the time of continuous driving. Furthermore, the phosphor layer contains a phosphor represented by the following general formula (A), which absorbs the light emitted from the light emitting element and thereby emits light having a main emission peak in the wavelength region of equal to or greater than 650 nm and equal to or less than 665 nm: (Mg1-x,AEx)a(Ge1-y,Sny)bOcHAd:zMn??(A) wherein AE represents at least one or more elements selected from the group consisting of Ca or Sr; HA represents at least one or more elements selected from the group consisting of F or Cl; 2.54?a?4.40, 0.80?b?1.10, 3.85?c?7.00, 0?d?2.00, 0?x?0.05, 0?y?0.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: June 25, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ryosuke Hiramatsu
  • Patent number: 8471252
    Abstract: An embodiment is to include a staggered (top gate structure) thin film transistor in which an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer and a buffer layer is provided between the semiconductor layer and a source and drain electrode layers. A metal oxide layer having higher carrier concentration than the semiconductor layer is provided intentionally as the buffer layer between the source and drain electrode layers and the semiconductor layer, whereby an ohmic contact is formed.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: June 25, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hidekazu Miyairi, Kengo Akimoto, Kojiro Shiraishi
  • Patent number: 8466515
    Abstract: On a main surface of a semiconductor substrate, an N? semiconductor layer is formed with a dielectric portion including relatively thin and thick portions interposed therebetween. In a predetermined region of the N? semiconductor layer, an N-type impurity region and a P-type impurity region are formed. A gate electrode is formed on a surface of a portion of the P-type impurity region located between the N-type impurity region and the N? semiconductor layer. In a predetermined region of the N? semiconductor layer located at a distance from the P-type impurity region, another P-type impurity region is formed. As a depletion layer block portion, another N-type impurity region higher in impurity concentration than the N? semiconductor layer is formed from the surface of the N? semiconductor layer to the dielectric portion.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: June 18, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tomohide Terashima
  • Patent number: 8466519
    Abstract: A mask-defined read-only memory array is formed on a substrate, and includes a first ROM bit and a second ROM bit of opposite polarities. The first ROM bit has a first MOS transistor and a first block layer formed over a first region of the substrate. A second source/drain region of the first MOS transistor and a first diffusion region are formed in a first region of the substrate on opposite sides of the first block layer. The second ROM bit includes a second MOS transistor.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: June 18, 2013
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Ching-Sung Yang, Shih-Jye Shen
  • Patent number: 8460983
    Abstract: Doped semiconductor ink formulations, methods of making doped semiconductor ink formulations, methods of coating or printing thin films, methods of forming electronic devices and/or structures from the thin films, and methods for modifying and controlling the threshold voltage of a thin film transistor using the films are disclosed. A desired dopant may be added to an ink formulation comprising a Group IVA compound and a solvent, and then the ink may be printed on a substrate to form thin films and conductive structures/devices, such as thin film transistors. By adding a customized amount of the dopant to the ink prior to printing, the threshold voltage of a thin film transistor made from the doped semiconductor ink may be independently controlled upon activation of the dopant.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: June 11, 2013
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Fabio Zürcher, Arvind Kamath, Joerg Rockenberger
  • Patent number: 8461678
    Abstract: A structure is provided with a self-aligned resist layer on a surface of metal interconnects for use in forming air gaps in an insulator material and method of fabricating the same. The non-lithographic method includes applying a resist on a structure comprising at least one metal interconnect formed in an insulator material. The method further includes blanket-exposing the resist to energy and developing the resist to expose surfaces of the insulator material while protecting the metal interconnects. The method further includes forming air gaps in the insulator material by an etching process, while the metal interconnects remain protected by the resist.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: June 11, 2013
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Elbert E. Huang, Robert D. Miller
  • Patent number: 8455990
    Abstract: A barrier layer can be attached in a semiconductor package to one or more sensitive devices. The barrier layer can be used to obstruct tampering by a malicious agent attempting to access sensitive information on the sensitive device. The barrier layer can cause the sensitive device to become inoperable if physically tampered. Additional other aspects of the protective packaging provide protection against x-ray and thermal probing as well as chemical and electrical tampering attempts.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 4, 2013
    Assignee: Conexant Systems, Inc.
    Inventors: Robert W Warren, Hyun Jung Lee, Nic Rossi
  • Patent number: 8455934
    Abstract: The invention relates to image sensors produced with CMOS technology, whose individual pixels, arranged in an array of rows and columns, each consist of a photodiode (PD1) associated with a charge storage region (N2) which receives the photogenerated charge before a charge readout phase. To eliminate the risk of introducing kTC-type noise into the signal, during the reset of the storage zone (N2) at the end of a readout cycle, the invention proposes that the storage zone be divided into two parts one of which (N2b), adjacent to the reset gate (G3), is covered by a diffused region (P2) of the same type of conductivity as the substrate in which the photodiode is formed, this region being brought to the fixed potential of the substrate, and the other (N2a) of which is not covered by such a region and is not adjacent to the reset gate.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 4, 2013
    Assignee: E2V Semiconductors
    Inventors: Pierre Fereyre, Simon Caruel
  • Patent number: 8455344
    Abstract: A non-volatile memory device includes field insulating layer patterns on a substrate to define an active region of the substrate, upper portions of the field insulating layer patterns protruding above an upper surface of the substrate, a tunnel insulating layer on the active region, a charge trapping layer on the tunnel insulating layer, a blocking layer on the charge trapping layer, first insulating layers on upper surfaces of the field insulating layer patterns, and a word line structure on the blocking layer and first insulating layers.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 4, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Suk-Kang Sung, Choong-Ho Lee, Dong-Uk Choi, Hee-Soo Kang
  • Patent number: 8457319
    Abstract: There is disclosed a stereo encoding device capable of accurately encoding a stereo signal at a low bit rate and suppressing delay in audio communication. The device performs monaural encoding in its first layer (110). In a second layer (120), a filtering unit (103) generates an LPC (Linear Predictive Coding) coefficient and generates a left channel drive sound source signal. A time region evaluation unit (104) and a frequency region evaluation unit (105) perform signal evaluation and prediction in both of their regions. A residual encoding unit (106) encodes a residual signal. A bit distribution control unit (107) adaptively distributes bits to the time region evaluation unit (104), the frequency region evaluation unit (105), and the residual encoding unit (106) according to a condition of the audio signal.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: June 4, 2013
    Assignee: Panasonic Corporation
    Inventors: Chun Woei Teo, Sua Hong Neo, Koji Yoshida, Michiyo Goto
  • Patent number: 8455966
    Abstract: Provided are transistor devices such as logic gates that are capable of associating a computational state and or performing logic operations with detectable electronic spin state and or magnetic state. Methods of operating transistor devices employing magnetic states are provided. Devices comprise input and output structures and magnetic films capable of being converted between magnetic states.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 4, 2013
    Assignee: Intel Corporation
    Inventors: C Michael Garner, Dmitri E. Nikonov
  • Patent number: 8450800
    Abstract: In one aspect, a semiconductor device includes a semiconductor substrate; and a transistor element including a parallel structure of a first-conductivity-type drift region and a second-conductivity-type column region, and a second-conductivity-type base region, the transistor element being formed on the semiconductor substrate. An outer peripheral region located outside an element forming region has a parallel structure of a first-conductivity-type drift region and a second-conductivity-type column region, and a second-conductivity-type annular diffusion region which is formed at a side of the base region and which is spaced apart from the base region. An innermost end and a neighboring portion thereof of the annular diffusion region are located on the column region, and an outermost end of the annular diffusion region is located outside an outermost peripheral column region. A field insulating film that covers the annular diffusion region is stacked on the semiconductor layer in the outer peripheral region.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 28, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hisao Inomata
  • Patent number: 8450165
    Abstract: A semiconductor device having tipless epitaxial source/drain regions and a method for its formation are described. In an embodiment, the semiconductor device comprises a gate stack on a substrate. The gate stack is comprised of a gate electrode above a gate dielectric layer and is above a channel region in the substrate. The semiconductor device also comprises a pair of source/drain regions in the substrate on either side of the channel region. The pair of source/drain regions is in direct contact with the gate dielectric layer and the lattice constant of the pair of source/drain regions is different than the lattice constant of the channel region. In one embodiment, the semiconductor device is formed by using a dielectric gate stack placeholder.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: May 28, 2013
    Assignee: Intel Corporation
    Inventor: Mark T. Bohr
  • Patent number: 8445983
    Abstract: A semiconductor device for performing photoelectric conversion of incident light includes a substrate and a well region having different conductivity types. A depletion layer is generated in a vicinity of a junction interface between the substrate and the well region. A first trench has a depth equal to a height up to a top portion of the depletion layer generated on a bottom side of the well region and a width extending to a heavily doped region formed in the well region. A second trench has a depth larger than that of a portion of the depletion layer generated on the bottom side of the well region and a width larger than that of portions of the depletion layer generated on the sides of the well region. The second trench surrounds the first trench so as to confine the depletion layer under the first trench except for a region thereof under the heavily doped region. An insulator is buried into each the first trench and the second trench.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 21, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Atsushi Iwasaki, Hiroaki Takasu
  • Patent number: 8445997
    Abstract: A device is disclosed which includes a first packaged integrated circuit device, a second packaged integrated circuit device positioned above the first packaged integrated circuit device and a plurality of planar conductive members conductively coupling the first and second packaged integrated circuit devices to one another. A method is also disclosed which includes conductively coupling a plurality of extensions on a leadframe to each of a pair of stacked packaged integrated circuit devices and cutting the leadframe to singulate the extensions from one another.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: May 21, 2013
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 8445941
    Abstract: A high-power and high-gain ultra-short gate HEMT device has exceptional gain and an exceptionally high breakdown voltage provided by an increased width asymmetric recess for the gate electrode, by a composite channel layer including a thin indium arsenide layer embedded in the indium gallium arsenide channel layer and by double doping through the use of an additional silicon doping spike. The improved transistor has an exceptional 14 dB gain at 110 GHz and exhibits an exceptionally high 3.5-4 V breakdown voltage, thus to provide high gain, high-power and ultra-high frequency in an ultra-short gate device.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: May 21, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Dong Xu, Xiaoping S. Yang, Wendell Kong, Lee M. Mohnkern, Phillip M. Smith, Pane-chane Chao
  • Patent number: 8441034
    Abstract: A method of fabricating a single crystal gallium nitride substrate the step of cutting an ingot of single crystal gallium nitride along predetermined planes to make one or more single crystal gallium nitride substrates. The ingot of single crystal gallium nitride is grown by vapor phase epitaxy in a direction of a predetermined axis. Each predetermined plane is inclined to the predetermined axis. Each substrate has a mirror polished primary surface. The primary surface has a first area and a second area. The first area is between an edge of the substrate and a line 3 millimeter away from the edge. The first area surrounds the second area. An axis perpendicular to the primary surface forms an off-angle with c-axis of the substrate. The off-angle takes a minimum value at a first position in the first area of the primary surface.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 14, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masaki Ueno
  • Patent number: 8431936
    Abstract: One embodiment of the present invention provides a method for fabricating a group III-V p-type nitride structure. The method comprises growing a first layer of p-type group III-V material with a first acceptor density in a first growing environment. The method further comprises growing a second layer of p-type group III-V material, which is thicker than the first layer and which has a second acceptor density, on top of the first layer in a second growing environment. In addition, the method comprises growing a third layer of p-type group III-V material, which is thinner than the second layer and which has a third acceptor density, on top of the second layer in a third growing environment.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: April 30, 2013
    Assignee: Lattice Power (Jiangxi) Corporation
    Inventors: Fengyi Jiang, Li Wang, Wenqing Fang, Chunlan Mo
  • Patent number: 8426869
    Abstract: A thin film transistor includes: a silicon nanowire on a substrate, the silicon nanowire having a central portion and both side portions of the central portion; a gate electrode on the central portion; and a source electrode and a drain electrode spaced apart from the source electrode on the both side portions, the source electrode and the drain electrode electrically connected to the silicon nanowire, respectively.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: April 23, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Gee-Sung Chae, Mi-Kyung Park