Patents Examined by Mandy C. Louie
  • Patent number: 11926782
    Abstract: A magnetizable abrasive particle is presented. The magnetizable abrasive particle has a ceramic particle having an outer surface. The magnetizable abrasive particle also has a magnetic coating layer applied to the outer surface of the ceramic particle prior to sintering. The sintered magnetizable particle is responsive to a magnetic field.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: March 12, 2024
    Assignee: 3M Innovative Property Company
    Inventors: Sergei A. Manuilov, Adam D. Milller, Laura M. Lara Rodriguez, Dwight D. Erickson, Anatoly Z. Rosenflanz
  • Patent number: 11802134
    Abstract: A class of organometallic compounds is provided. The compounds correspond in structure to Formula 1 (A)x-M-(OR3)4-x wherein: A is selected from the group consisting of —NR1R2, —N(R4)(CH2)nN(R5R6), —N?C(NR4R5)(NR6R7), OCOR1, halo and Y; R1 and R2 are independently selected from the group consisting of H and a cyclic or acyclic alkyl group having from 1 to 8 carbon atoms, with the proviso that at least one of R1 and R2 must be other than H; R4, R5, R6 and R7 are independently selected from the group consisting of H and an acyclic alkyl group having from 1 to 4 carbon atoms; Y is selected from the group consisting of a 3- to 13-membered heterocyclic radical containing at least one nitrogen atom; R3 is a cyclic or acyclic alkyl group having from 1 to 6 carbon atoms; M is selected from the group consisting of Si, Ge, Sn, Ti, Zr and Hf; x is an integer from 1 to 3; and n is an integer from 1 to 4.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: October 31, 2023
    Assignee: SEASTAR CHEMICALS ULC
    Inventors: Rajesh Odedra, Cunhai Dong, Shaun Cembella
  • Patent number: 11760636
    Abstract: Disclosed is a process for producing graphene from solid hydrocarbons including biomass and coal. The disclosed method does not require the presence of hydrogen and does not operate under a vacuum. The method begins by converting biomass to a graphene precursor while coal is used as is. Subsequently, the method grinds the graphene precursor to provide a desired particle size. The particles of graphene precursor (biocoal or coal) are converted to graphene by catalytic conversion on metallic foil under atmospheric conditions and in the absence of hydrogen.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: September 19, 2023
    Assignee: The University of Tulsa
    Inventors: Hema Ramsurn, Rahul Kundu
  • Patent number: 11639549
    Abstract: The present invention is in the field of processes for producing organic-inorganic laminates by atomic layer deposition. In particular the present invention relates to a process for producing a laminate comprising moving a substrate relative to at least two separate orifices arranged along the relative moving trajectory wherein through at least one orifice an organic compound in the gaseous state is passed towards the surface of the substrate and through at least one other orifice a (semi)metal-containing compound in the gaseous state is passed towards the surface of the substrate and wherein the orifices are mounted on a rotating drum.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: May 2, 2023
    Assignee: BASF COATINGS GMBH
    Inventors: Maraike Ahlf, Felix Eickemeyer, Stephan Klotz
  • Patent number: 11629402
    Abstract: Embodiments of the present disclosure generally relate to processing an optical workpiece containing grating structures on a substrate by deposition processes, such as atomic layer deposition (ALD). In one or more embodiments, a method for processing an optical workpiece includes positioning a substrate containing a first layer within a processing chamber, where the first layer contains grating structures separated by trenches formed in the first layer, and each of the grating structures has an initial critical dimension, and depositing a second layer on at least the sidewalls of the grating structures by ALD to produce corrected grating structures separated by the trenches, where each of the corrected grating structures has a corrected critical dimension greater than the initial critical dimension.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: April 18, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jinrui Guo, Ludovic Godet, Rutger Meyer Timmerman Thijssen
  • Patent number: 11629405
    Abstract: Disclosed are vapor transport deposition systems and methods for alternating sequential vapor transport deposition of multi-component perovskite thin-films. The systems include multiple vaporizing sources that are mechanically or digitally controlled for high throughput deposition. Alternating sequential deposition provides faster sequential deposition, and allows for reduced material degradation due to different vapor temperatures.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: April 18, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Maximilian Hoerantner
  • Patent number: 11615900
    Abstract: A virtual adhesion method is provided. The virtual adhesion method includes increasing a magnetic characteristic of an initial structure, supporting the initial structure on a surface of a substrate, generating a magnetic field directed such that the initial structure is forced toward the surface of the substrate and forming an encapsulation, which is bound to exposed portions of the surface, around the initial structure.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: March 28, 2023
    Assignee: RAYTHEON COMPANY
    Inventors: Catherine Trent, Gary A. Frazier, Kyle L. Grosse
  • Patent number: 11598000
    Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Ranga Rao Arnepalli, Colin Costano Neikirk, Yuriy Melnik, Suresh Chand Seth, Pravin K. Narwankar, Sukti Chatterjee, Lance A. Scudder
  • Patent number: 11572619
    Abstract: Embodiments of the present disclosure generally relate to processing a workpiece containing a substrate during deposition, etching, and/or curing processes with a mask to have localized deposition on the workpiece. A mask is placed on a first layer of a workpiece, which protects a plurality of trenches from deposition of a second layer. In some embodiments, the mask is placed before deposition of the second layer. In other embodiments, the second layer is cured before the mask is deposited. In other embodiments, the second layer is etched after the mask is deposited. Methods disclosed herein allow the deposition of a second layer in some of the trenches present in the workpiece, while at least partially preventing deposition of the second layer in other trenches present in the workpiece.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: February 7, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jinrui Guo, Ludovic Godet, Rutger Meyer Timmerman Thijssen, Yongan Xu, Jhenghan Yang, Chien-An Chen
  • Patent number: 11560628
    Abstract: A substrate processing method includes supplying processing gas from a plurality of gas holes formed along a longitudinal direction of an injector, which extends in a vertical direction along an inner wall surface of a processing container and is rotatable around a rotational axis extending in the vertical direction, to perform a predetermined process on a substrate accommodated in the processing container. The predetermined process includes a plurality of operations, and a supply direction of the processing gas is changed by rotating the injector in accordance with the operations.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: January 24, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Kohei Fukushima
  • Patent number: 11542597
    Abstract: Embodiments described and discussed herein provide methods for selectively depositing a metal oxides on a substrate. In one or more embodiments, methods for forming a metal oxide material includes positioning a substrate within a processing chamber, where the substrate has passivated and non-passivated surfaces, exposing the substrate to a first metal alkoxide precursor to selectively deposit a first metal oxide layer on or over the non-passivated surface, and exposing the substrate to a second metal alkoxide precursor to selectively deposit a second metal oxide layer on the first metal oxide layer. The method also includes sequentially repeating exposing the substrate to the first and second metal alkoxide precursors to produce a laminate film containing alternating layers of the first and second metal oxide layers. Each of the first and second metal alkoxide precursors contain different types of metals which are selected from titanium, zirconium, hafnium, aluminum, or lanthanum.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 3, 2023
    Assignees: APPLIED MATERIALS, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Keith Tatseun Wong, Srinivas D. Nemani, Andrew C. Kummel, James Huang, Yunil Cho
  • Patent number: 11535932
    Abstract: A film forming method includes forming a film by sequentially performing operations for each of a plurality of kinds of reaction gases, the operations being of storing the reaction gas in a storage part to raise a pressure in the storage part to a first pressure and then discharging the reaction gas into the process vessel, while continuously supplying the counter gas, and purging by repeating multiple times operations of storing a purge gas in the storage part provided in the reaction gas supply passage to raise the pressure in the storage part to a second pressure higher than the first pressure, and discharging the purge gas into the process vessel. A flow rate of the counter gas supplied into the process vessel in the purging is smaller than a flow rate of the counter gas supplied into the process vessel in the forming the film.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 27, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Taichi Monden
  • Patent number: 11523609
    Abstract: The invention relates to the field concerning the treatment of plant material, particularly plant material for propagation or reproduction e.g. seeds. The method of the invention comprises the application, to all or part of the surface of plant material, of an aqueous dispersion comprising (a) particles of at least one water-swellable polymer and (b) at least one compound selected from among a mineral salt, organic salt, dispersant organic polymer and mixtures thereof. The invention also relates to this treated plant material and to use thereof for cultivating or producing a plant.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: December 13, 2022
    Assignee: S.P.C.M. SA
    Inventors: Alexandre Omont, Charles Lecointe
  • Patent number: 11525182
    Abstract: A steel sheet is provided with a coating having at least one layer of zinc and a top layer of paint applied by cataphoresis. The zinc layer is deposited by a jet vapor deposition process in a deposition chamber maintained at a pressure between 6·10?2 mbar and 2·10?1 mbar. A fabrication method and an installation are also provided.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: December 13, 2022
    Assignee: ArcelorMittal
    Inventors: Daniel Chaleix, Daniel Jacques, Sergio Pace, Eric Silberberg, Bruno Schmitz, Xavier Vanden Eynde
  • Patent number: 11466364
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on substrates and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on a substrate includes depositing a chromium oxide layer containing amorphous chromium oxide on a surface of the substrate during a first vapor deposition process and heating the substrate containing the chromium oxide layer comprising the amorphous chromium oxide to convert at least a portion of the amorphous chromium oxide to crystalline chromium oxide during a first annealing process. The method also includes depositing an aluminum oxide layer containing amorphous aluminum oxide on the chromium oxide layer during a second vapor deposition process and heating the substrate containing the aluminum oxide layer disposed on the chromium oxide layer to convert at least a portion of the amorphous aluminum oxide to crystalline aluminum oxide during a second annealing process.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: October 11, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kenichi Ohno, Eric H. Liu, Sukti Chatterjee, Yuriy Melnik, Thomas Knisley, David Alexander Britz, Lance A. Scudder, Pravin K. Narwankar
  • Patent number: 11447391
    Abstract: A method of growing a graphene coating or carbon nanotubes on a catalytic substrate by chemical vapor deposition is provided. In the method, the chemical vapor deposition is carried out in an atmosphere in which a ratio Pox/Pred is about 5×10?26 or less, wherein Pox is the partial pressure oxidizing species in the atmosphere and Pred is the partial pressure of reducing species in the atmosphere. A catalytic substrate coated with a graphene coating grown according to this method is also provided.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: September 20, 2022
    Inventors: Saman Choubak, Pierre Lévesque, Philippe Gagnon, Richard Martel, Patrick Desjardins
  • Patent number: 11437178
    Abstract: A coil component including: a magnetic body containing a magnetic material and a resin; a coil buried in the magnetic body; and a pair of outer electrodes electrically connected to the coil. One or more side faces of the magnetic body have a groove, and the groove contains a silicone resin.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: September 6, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Kenichi Araki
  • Patent number: 11417448
    Abstract: A method for manufacturing a device having a three-dimensional magnetic structure includes applying or introducing magnetic particles onto or into a carrier element. A plurality of at least partly interconnected cavities are formed between the magnetic particles, which contact one another at points of contact, by coating the arrangement of magnetic particles and the carrier. The cavities are penetrated at least partly by the layer generated when coating, resulting in the three-dimensional magnetic structure. A conductor loop arrangement is provided on the carrier or a further carrier. When a current flows through the conductor loop, an inductance of the conductor loop is changed by the three-dimensional magnetic structure, or a force acts on the three-dimensional magnetic structure or the conductor loop by a magnetic field caused by the current flow, or when the position of the three-dimensional magnetic structure is changed, a current flow is induced through the conductor loop.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: August 16, 2022
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Thomas Lisec, Hans-Joachim Quenzer, Tim Reimer
  • Patent number: 11352692
    Abstract: The present invention is to provide: a method for producing a novel hexagonal boron nitride thin film suitable for industrial use such as application to electronics, in which a hexagonal boron nitride thin film having a large area, a uniform thickness of 1 nm or more, with few grain boundaries can be produced inexpensively; and a hexagonal boron nitride thin film. The hexagonal boron nitride thin film according to the present invention is characterized by having a thickness of 1 nm or more, and an average value of the full width at half maximum of the E2g peak obtained from Raman spectrum of 9 to 20 cm?1.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: June 7, 2022
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hiroki Ago, Kenji Kawahara, Yuki Uchida, Sho Nakandakari, Daichi Tanaka
  • Patent number: 11289328
    Abstract: Chromium containing precursors and methods of forming chromium-containing thin films are described. The chromium precursor has a chromium-diazadiene bond or cyclopentadienyl ligand and is homoleptic or heteroleptic. A suitable reactant is used to provide one of a metallic chromium film or a film comprising one or more of an oxide, nitride, carbide, boride and/or silicide. Methods of forming ternary materials comprising chromium with two or more of oxygen, nitrogen, carbon, boron, silicon, titanium, ruthenium and/or tungsten are also described. Methods of filling gaps in a substrate with a chromium-containing film are also described.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 29, 2022
    Assignee: Applied Materials Inc.
    Inventors: Thomas Knisley, Mark Saly, Lakmal C. Kalutarage, David Thompson