Patents Examined by Maria Ligai
  • Patent number: 8765579
    Abstract: A semiconductor wafer has a device area where a plurality of semiconductor devices are respectively formed in a plurality of regions partitioned by a plurality of crossing division lines formed on the front side of the semiconductor wafer and a peripheral area surrounding the device area. The back side of the semiconductor wafer corresponding to the device area is ground to thereby form a circular recess and an annular projection surrounding the circular recess. In a chip stacked wafer forming step, a plurality of semiconductor device chips are provided on the bottom surface of the circular recess of the semiconductor wafer at the positions respectively corresponding to the semiconductor devices of the semiconductor wafer. The chip stacked wafer is ground to reduce the thickness of each semiconductor device chip to a finished thickness, and a through electrode is formed in each semiconductor device of the semiconductor wafer.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: July 1, 2014
    Assignee: Disco Corporation
    Inventors: Youngsuk Kim, Shigenori Harada
  • Patent number: 8766410
    Abstract: Integrated circuits having combined memory and logic functions are provided. In one aspect, an integrated circuit is provided. The integrated circuit comprises: a substrate comprising a silicon layer over a BOX layer, wherein a select region of the silicon layer has a thickness of between about three nanometers and about 20 nanometers; at least one eDRAM cell comprising: at least one pass transistor having a pass transistor source region, a pass transistor drain region and a pass transistor channel region formed in the select region of the silicon layer; and a capacitor electrically connected to the pass transistor.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Josephine Chang, Leland Chang, Brian L. Ji, Steven John Koester, Amlan Majumdar
  • Patent number: 8765581
    Abstract: Subject matter disclosed herein relates to a memory device, and more particularly to a self-aligned cross-point phase change memory-switch array and methods of fabricating same.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: July 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jong Won Lee, Gianpaolo Spadini, Derchang Kau
  • Patent number: 8759983
    Abstract: A semiconductor device according to one embodiment includes: a semiconductor substrate provided with a semiconductor element; a connecting member formed above the semiconductor substrate configured to electrically connect upper and lower conductive members; a first insulating film formed in the same layer as the connecting member; a wiring formed on the connecting member, the wiring including a first region and a second region, the first region contacting with a portion of an upper surface of the connecting member, and the second region located on the first region and having a width greater than that of the first region; and a second insulating film formed on the first insulating film so as to contact with at least a portion of the first region of the wiring and with a bottom surface of the second region.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Wada, Akihiro Kajita, Kazuyuki Higashi
  • Patent number: 8754455
    Abstract: Disclosed are embodiments of a junction field effect transistor (JFET) structure with one or more P-type silicon germanium (SiGe) or silicon germanium carbide (SiGeC) gates (i.e., a SiGe or SiGeC based heterojunction JFET). The P-type SiGe or SiGeC gate(s) allow for a lower pinch off voltage (i.e., lower Voff) without increasing the on resistance (Ron). Specifically, SiGe or SiGeC material in a P-type gate limits P-type dopant out diffusion and, thereby ensures that the P-type gate-to-N-type channel region junction is more clearly defined (i.e., abrupt as opposed to graded). By clearly defining this junction, the depletion layer in the N-type channel region is extended. Extending the depletion layer in turn allows for a faster pinch off (i.e., requires lower Voff). P-type SiGe or SiGeC gate(s) can be incorporated into conventional lateral JFET structures and/or vertical JFET structures. Also disclosed herein are embodiments of a method of forming such a JFET structure.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Xiaowei Tian
  • Patent number: 8753957
    Abstract: This invention relates to a method for producing solar cells, and photovoltaic panels thereof. The method for producing solar panels comprises employing a number of semiconductor wafers and/or semiconductor sheets of films prefabricated to prepare them for back side metallization, which are placed and attached adjacent to each other and with their front side facing downwards onto the back side of the front glass, before subsequent processing that includes depositing at least one metal layer covering the entire front glass including the back side of the attached wafers/sheets of films. The metallic layer is then patterned/divided into electrically isolated contacts for each solar cell and into interconnections between adjacent solar cells.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: June 17, 2014
    Assignee: Rec Solar Pte. Ltd.
    Inventors: Martin Nese, Erik Sauar, Andreas Bentzen, Paul Alan Basore
  • Patent number: 8748251
    Abstract: A method for manufacturing a semiconductor may include providing a substrate having first and second regions defined therein, forming an interlayer dielectric layer including first and second trenches formed in the first and second regions, respectively, and conformally forming a gate dielectric layer along a top surface of the interlayer dielectric layer, side and bottom surfaces of the first trench and side, and bottom surfaces of the second trench. An etch stop dielectric layer may be formed on the gate dielectric layer, a first metal layer may be formed to fill the first and second trenches, and the first metal layer in the first region may be removed using the etch stop dielectric layer as an etch stopper.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 10, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoon-Joo Na, Hyung-Seok Hong, Sang-Bom Kang, Hyeok-Jun Son, June-Hee Lee, Jeong-Hee Han, Sang-Jin Hyun
  • Patent number: 8749074
    Abstract: Embodiments include but are not limited to apparatuses and systems including semiconductor packages, e.g. memory packages, having an interposer including at least one topological feature, such as a depression in a surface of the interposer, a die coupled to the surface of the interposer, and an encapsulant material formed over the die and the interposer, and disposed in the at least one depression to resist movement of the encapsulant material relative to the interposer. Other embodiments may be described and claimed.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: June 10, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Steven Eskildsen, Aravind Ramamoorthy
  • Patent number: 8741673
    Abstract: The present invention relates to a polarized light emitting diode (LED) device and the method for manufacturing the same, in which the LED device comprises: a base, a light emitting diode (LED) chip, a polarizing waveguide and a packaging material. In an exemplary embodiment, the LED chip is disposed on the base and is configured with a first light-emitting surface for outputting light therefrom; and the waveguide, being comprised of a polarization layer, a reflection layer, a conversion layer and a light transmitting layer, is disposed at the optical path of the light emitted from the LED chip; and the packaging material is used for packaging the waveguide, the LED chip and the base into a package.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: June 3, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Huan Chen, Han-Ping Yang, Hung-Yi Lin, Cheng-Hsuan Lin
  • Patent number: 8735221
    Abstract: Provided are a stacked package, method of fabricating a stacked package, and method of mounting a stacked package. A method includes providing an upper semiconductor package including an upper package substrate, upper semiconductor chips formed on a top surface of the upper package substrate, and first solders formed on a bottom surface of the upper package substrate and having a first melting temperature, providing a lower semiconductor package including a lower package substrate, lower semiconductor chips formed on a top surface of the lower package substrate, and solder paste nodes formed on the top surface of the lower package substrate and having a second melting temperature lower than the first melting temperature, and forming inter-package bonding units by attaching respective first solders and solder paste nodes to each other by performing annealing at a temperature higher than the second melting temperature and lower than the first melting temperature.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 27, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Wook Yoo, Sun-Kyoung Seo
  • Patent number: 8728922
    Abstract: A method for producing monocrystalline n-silicon solar cells having a rear-side passivated p+ emitter and rear-side, spatially separate heavily doped n++-base regions near the surface, as well as an interdigitated rear-side contact finger structure, which is in conductive connection with the p+-emitter regions and the n++-base regions. An aluminum thin layer or an aluminum-containing thin layer is first deposited on the rear side of the n-silicon wafer, and the thin layer is subsequently structured so that openings are obtained in the region of the future base contacts. In a further process step, the aluminum is then diffused into the n-silicon wafer in order to form a structured emitter layer.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: May 20, 2014
    Assignee: SolarWorld Industries-Thueringen GmbH
    Inventors: Hans-Joachim Krokoszinski, Jan Lossen
  • Patent number: 8722453
    Abstract: The method includes: steps of forming an n-type diffusion layer having an n-type impurity diffused thereon at a first surface side of a p-type silicon substrate; forming a reflection prevention film on the n-type diffusion layer; forming a back-surface passivation film made of an SiONH film on a second surface of the silicon substrate; forming a paste material containing silver in a front-surface electrode shape on the reflection prevention film; forming a front surface electrode that is contacted to the n-type diffusion layer by sintering the silicon substrate; forming a paste material containing a metal in a back-surface electrode shape on the back-surface passivation film; and forming a back surface electrode by melting a metal in the paste material by irradiating laser light onto a forming position of the back surface electrode and by solidifying the molten metal.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Mitsunori Nakatani
  • Patent number: 8716038
    Abstract: Several embodiments of semiconductor systems and associated methods of color corrections are disclosed herein. In one embodiment, a method for producing a light emitting diode (LED) includes forming an (LED) on a substrate, measuring a base emission characteristic of the formed LED, and selecting a phosphor based on the measured base emission characteristic of the formed LED such that a combined emission from the LED and the phosphor at least approximates white light. The method further includes introducing the selected phosphor onto the LED via, for example, inkjet printing.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: May 6, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kevin Tetz, Charles M. Watkins
  • Patent number: 8709886
    Abstract: An HEMT includes, on an SiC substrate, a compound semiconductor layer, a silicon nitride (SiN) protective film having an opening and covering the compound semiconductor layer, and a gate electrode formed on the compound semiconductor layer so as to plug the opening. In the protective film, a projecting portion projecting from a side surface of the opening is formed at a lower layer portion 6a.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 29, 2014
    Assignee: Fujitsu Limited
    Inventors: Kozo Makiyama, Naoya Okamoto, Toshihiro Ohki, Yuichi Minoura, Shirou Ozaki, Toyoo Miyajima
  • Patent number: 8704334
    Abstract: A semiconductor device includes an internal circuit provided on a substrate, a plurality of external terminals connected to the internal circuit, a plurality of wires connecting the internal circuit and the external terminals, and a plurality of inductors communicating with an external device. Each of the inductors is connected to each of the wires. The external terminals are formed in a region not to interrupt communication between the inductors and the external device.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 22, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Patent number: 8691609
    Abstract: Gas sensor materials and methods are disclosed for preparing and using the same to produce gas sensor structures. Also disclosed are gas sensor structures and systems that employ these disclosed materials. A gas sense-enhancing metal such as platinum may be added to a gas sensitive metal oxide material in a manner that more highly disperses the added platinum than conventional methods so as to more effectively utilize the platinum at a lower concentration, thus achieving a more cost effective solution. An ink vehicle may also be used for deposition of a gas sensitive material (e.g. on the surface of integrated circuit) that is formulated to allow “burn-out” of ink vehicle components at relatively low temperatures as compared to conventional ink vehicles.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 8, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Peter Smith, Jane Blake, Leon Cavanagh, Raymond Speer
  • Patent number: 8686461
    Abstract: A light emitting diode (LED) die includes a first substrate having a first surface and an opposing second surface; a second substrate on the second surface of the first substrate; a p-type semiconductor layer on the first surface of the first substrate; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 1, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Jiunn-Yi Chu, Chen-Fu Chu, Chao-Chen Cheng
  • Patent number: 8686528
    Abstract: A semiconductor device of the present invention includes: a lower electrode (110); a contact layer (130) including a first contact layer (132), a second contact layer (134) and a third contact layer (136) overlapping with a semiconductor layer (120); and an upper electrode (140) including a first upper electrode (142), a second upper electrode (144) and a third upper electrode (146). The second contact layer (134) includes a first region (134a), and a second region (134b) separate from the first region (134a), and the second upper electrode (144) is directly in contact with the semiconductor layer (120) in a region between the first region (134a) and the second region (134b) of the second contact layer (134).
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: April 1, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yudai Takanishi, Masao Moriguchi
  • Patent number: 8669177
    Abstract: A semiconductor device includes an insulation film formed above a semiconductor substrate, a conductor containing Cu formed in the insulation film, and a layer film formed between the insulation film and the conductor and formed of a first metal film containing Ti and a second metal film different from the first metal film, a layer containing Ti and Si is formed on the surface of the conductor.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: March 11, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Takahiro Kouno, Shinichi Akiyama, Hirofumi Watatani, Tamotsu Owada
  • Patent number: 8669131
    Abstract: Gas sensor materials and methods are disclosed for preparing and using the same to produce gas sensor structures. Also disclosed are gas sensor structures and systems that employ these disclosed materials. A gas sense-enhancing metal such as platinum may be added to a gas sensitive metal oxide material in a manner that more highly disperses the added platinum than conventional methods so as to more effectively utilize the platinum at a lower concentration, thus achieving a more cost effective solution. An ink vehicle may also be used for deposition of a gas sensitive material (e.g. on the surface of integrated circuit) that is formulated to allow “burn-out” of ink vehicle components at relatively low temperatures as compared to conventional ink vehicles.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 11, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Peter Smith, Jane Blake, Leon Cavanagh, Raymond Speer