Patents Examined by Maris R Kessel
  • Patent number: 10968526
    Abstract: The invention relates to an electrolysis cell of alkali solutions partitioned by an ion-exchange membrane into an anodic compartment in which an alkaline electrolyte is circulated and a cathodic compartment consisting of a gas chamber; the cathodic compartment contains a gas-diffusion cathode in whose interior an electrolyte film coming from the anodic compartment percolates.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: April 6, 2021
    Assignee: INDUSTRIE DE NORA S.P.A.
    Inventors: Luciano Iacopetti, Antonio Lorenzo Antozzi
  • Patent number: 10969362
    Abstract: A particular-gas concentration-measuring apparatus measures a particular gas concentration being the concentration of a particular gas in a measurement-object gas. The particular-gas concentration-measuring apparatus comprises a particular-gas concentration derivation unit. The particular-gas concentration derivation unit causes an electromotive-force acquisition unit to acquire an electromotive force and derives a correction value compensating for the difference between a correction-value derivation electromotive force that is the electromotive force and the reference electromotive force at a correction-value derivation time. The correction-value derivation time is a time during which a sensing electrode is exposed to a correction-value derivation gas, the correction-value derivation gas being the measurement-object gas where neither ammonia nor a combustible gas is assumed to be included.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: April 6, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventor: Taku Okamoto
  • Patent number: 10969363
    Abstract: A sensor element includes: a main pump cell constituted by an inner pump electrode facing a first inner space into which a measurement gas is introduced, an external pump electrode provided on a surface of the sensor element, and a solid electrolyte located therebetween; and a measurement pump cell constituted by a measurement electrode facing a second inner space communicated with the first inner space and functioning as a reduction catalyst for NOx; and a solid electrolyte located therebetween. The inner pump electrode is a cermet made of Pt and ZrO2, the inner pump electrode has a porosity ranging from 1-5% and a thickness ranging from 5-20 ?m, a resistance of the main pump cell is equal to or smaller than 150?, and a diffusion resistance from the gas inlet to the inner pump electrode is ranging from 200-1000 cm?1.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: April 6, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Yusuke Watanabe, Takayuki Sekiya
  • Patent number: 10962499
    Abstract: A sensor for hydrogen in a fluid medium has a chamber for electrolyte with a window which is selectively permeable to hydrogen to allow hydrogen to pass from the fluid medium under test into the electrolyte in the chamber. A plurality of electrodes in contact with the ionic liquid electrolyte are used to observe hydrogen concentration by voltammetry. The electrolyte is an ionic liquid. Applications where such a sensor may be used include a wellbore tool for measuring the content of hydrogen in a subterranean fluid, monitoring of fiber-optic cables for damage by hydrogen, corrosion monitoring, and small-scale process plant where hydrogen is part of a gas stream.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: March 30, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Debbie S. Silvester, Nathan Scott Lawrence, Richard Compton, Timothy Jones, Li Jiang, Hanpu Liang
  • Patent number: 10955375
    Abstract: A multi electrode sensor that provides in-situ, real time measurements for molten salts and other process fluids such as real-time concentration and salt level measurements for nuclear systems such as molten salt reactors, nuclear reprocessing facilities utilizing molten salts and concentrated solar power systems. The sensor has multiple electrodes with unique lengths which are connected to a potentiostat. Measurements are taken when the electrodes are immersed in the process fluid.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 23, 2021
    Assignee: U.S. Department of Energy
    Inventors: Nathaniel C. Hoyt, Mark A. Williamson, James L. Willit
  • Patent number: 10955376
    Abstract: A sensor element includes: a main pump cell constituted by an inner pump electrode facing the first inner space into which a measurement gas is introduced, an external pump electrode provided on an element surface, and a solid electrolyte located therebetween; a measurement electrode facing a second inner space communicating with the first inner space and functioning as a reduction catalyst for NOx; and a measurement pump cell constituted by the measurement electrode, the external pump electrode, and a solid electrolyte located therebetween. A diffusion resistance from the gas inlet to the inner pump electrode ranges from 200-1000 cm?1, a resistance of the main pump cell is equal to or smaller than 150?, a distance between the electrodes ranges from 0.1-0.6 mm, and the inner pump electrode which is a cermet made of an Au—Pt alloy and ZrO2 has an area ranging from 5-20 mm2.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 23, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Yusuke Watanabe, Takayuki Sekiya, Yuki Nakayama, Shota Kageyama
  • Patent number: 10948455
    Abstract: A biopolymer (e.g. DNA) sequencing system comprises a biopolymer capture element for capturing a biopolymer from a sample disposed on a substrate for receiving the sample which capture element is preferably provided by a helicase which further acts as a size exclusion molecular motor for delivering a biopolymer such as DNA to a discrete detection means associated with the capture element and the substrate. The detection means may detect signals or variances in a signal associated with the biomolecule and, in particular, components of the biomolecule (e.g. nucleotides or bases). The biomolecule may be returned to the sample. Highly efficient, high speed, low cost sequencing of biopolymers such DNA are thereby achievable.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: March 16, 2021
    Assignee: HULDAGATE TECHNOLOGIES LIMITED
    Inventor: Joseph Prosser
  • Patent number: 10948452
    Abstract: An oxygen sensor comprises a housing defining an interior space, a sensing electrode, a reference electrode, a counter electrode, a separator retaining an electrolyte, and a chamber within the housing. The retained electrolyte provides ionically conductive pathways between each of the sensing electrode, the reference electrode, and the counter electrode within the housing, and the chamber contains the sensing electrode. The chamber comprises an opening, and the separator extends into the chamber and substantially fills the opening.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: March 16, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventor: Neils Hansen
  • Patent number: 10920259
    Abstract: An improved disposable electrochemical test sensor designed to facilitate reducing volume of fluid samples. It has a short fluid chamber having two electrodes that functions as three electrodes (one working electrode, one reference electrode and one blank electrode). The chamber provides a reservoir from which a sample fluid can be quickly drawn into the chamber through capillary action. The novel potential reverse and curve-fitting technology of the test sensor provided by the present invention can effectively eliminate most common interferents existing in the fluid samples.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 16, 2021
    Assignee: Changsha Sinocare Inc.
    Inventors: Xiaohua Cai, Liang Shen, Limingxuan Xu, Pengshu Wang, Qiang Zou, Chen Xiao, Yuehui Li
  • Patent number: 10914707
    Abstract: A reference electrode according to the present invention maintains continuity between an internal solution and measurement sample and measures the electrical potential of the measurement sample even if the measurement sample in a liquid junction of the reference electrode has air bubbles mixed therein. This reference electrode is provided with: a second body provided with a second internal solution chamber in which a second internal solution is housed and a liquid junction portion disposed in the second internal solution chamber such that the second internal solution and measurement sample that is to be measured come into contact; and an internal electrode disposed inside the second internal solution. The liquid junction portion is formed from a conduction component formed from a porous or fibrous component and an aperture adjacent to the conduction component.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: February 9, 2021
    Assignee: HORIBA, Ltd.
    Inventors: Kazuhiro Miyamura, Yoko Nakai, Yoshihiro Mori, Yoshito Komada, Kimihiko Arimoto, Yuiji Tsujioka, Tomoko Seko, Hiroki Minowa
  • Patent number: 10908112
    Abstract: A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Input signals including multiple duty cycles of sequential excitation pulses and relaxations are input to the sample. One or more signals output from the sample within 300 ms of the input of an excitation pulse may be correlated with the analyte concentration of the sample to improve the accuracy and/or precision of the analysis. Determining the analyte concentration of the sample from these rapidly measured output values may reduce analysis errors arising from the hematocrit effect, mediator background, and other error sources.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 2, 2021
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventor: Huan-Ping Wu
  • Patent number: 10908164
    Abstract: An apparatus for glycan analysis is disclosed. The apparatus includes a plurality of loading wells adapted to receive a plurality of samples; a plurality of capillaries arranged in correspondence with the loading wells, each of the capillaries including a first portion including a stacking gel and a second portion including a resolving gel; and a plurality of eluting wells arranged in correspondence with the capillaries and adapted to receive a portion of the samples having traversed the capillaries.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 2, 2021
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventor: Peter Slade
  • Patent number: 10908073
    Abstract: A method and apparatus are provided, in which an observation volume is defined by a volume where light from illumination means and a field of view of detection means overlap. The central axes of said light from the illumination means and said field of view of the detection means are non-parallel, and the sample is transported through the observation volume during imaging, preferably by rotation of a sample container holding the sample.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 2, 2021
    Assignee: SINGLE TECHNOLOGIES AB
    Inventors: Bengt Sahlgren, Raoul Stubbe, Johan Strömqvist
  • Patent number: 10908143
    Abstract: Conventionally, only a pair of electrodes is provided and nanopores arranged in parallel are connected by an electrolyte solution, and therefore a change in an ion current to be measured is a sum of changes in ion currents generated in the respective nanopores.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: February 2, 2021
    Assignee: Hitachi, Ltd.
    Inventors: Takahide Yokoi, Takashi Anazawa
  • Patent number: 10890559
    Abstract: An ITP-based system and a method are provided. ITP is used to focus a sample of interest and deliver a high concentration target to a pre-functionalized surface comprising immobilized probes, thus enabling rapid reaction at the sensor site.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: January 12, 2021
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Moran Bercovici, Merav Karsenty
  • Patent number: 10888863
    Abstract: This disclosure provides an apparatus and a method for quickly, efficiently and continuously fractionating biomolecules, such as DNAs and proteins based on size and other factors, while allowing imaging of the separated biomolecules as they are processed within the apparatus. The apparatus employs angled nanochannels to first preconcentrate and then separate like molecules. Its embodiments offer improved detection sensitivity and separation resolution over existing technologies and multiplexing capabilities.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: January 12, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Sung Hee Ko, Jongyoon Han
  • Patent number: 10883958
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: January 5, 2021
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
  • Patent number: 10876994
    Abstract: A sensor element includes an element body having an elongate rectangular parallelepiped shape and including solid electrolyte layers with oxygen ion conductivity, an outer pump electrode disposed on a first surface of the element body, and a protective layer covering at least a part of a second surface of the element body on a side opposite to the first surface and including one or more exposed spaces (a lower space) to which the second surface is exposed.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 29, 2020
    Assignee: NGK INSULATORS, LTD.
    Inventors: Takashi Hino, Mika Murakami, Koichi Masuda, Hironori Sakakibara
  • Patent number: 10877005
    Abstract: An analyte concentration can be measured at an electrochemical detector using a waveform that includes a reductive voltage. The waveform may include three or four different voltages, in which at least one of the voltage values is reductive. One or more current or charge values can be measured during at least part of a reductive voltage portion of the waveform. The analyte concentration can be calculated based on the measured one or more current or charge values.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 29, 2020
    Assignee: Dionex Corporation
    Inventors: Jun Cheng, Yan Liu
  • Patent number: 10870113
    Abstract: Methods, devices, and systems for performing isoelectric focusing reactions are described. The systems or devices disclosed herein may comprise fixtures that have a membrane. In some instances, the disclosed devices may be designed to perform isoelectric focusing or other separation reactions followed by further characterization of the separated analytes using mass spectrometry. The disclosed methods, devices, and systems provide for fast, accurate separation and characterization of protein analyte mixtures or other biological molecules by isoelectric point.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: December 22, 2020
    Assignee: INTABIO, INC.
    Inventors: Erik Gentalen, Scott Mack, Eric Gwerder, Luc Bousse