Abstract: A biopolymer (e.g. DNA) sequencing system comprises a biopolymer capture element for capturing a biopolymer from a sample disposed on a substrate for receiving the sample which capture element is preferably provided by a helicase which further acts as a size exclusion molecular motor for delivering a biopolymer such as DNA to a discrete detection means associated with the capture element and the substrate. The detection means may detect signals or variances in a signal associated with the biomolecule and, in particular, components of the biomolecule (e.g. nucleotides or bases). The biomolecule may be returned to the sample. Highly efficient, high speed, low cost sequencing of biopolymers such DNA are thereby achievable.
Abstract: An improved disposable electrochemical test sensor designed to facilitate reducing volume of fluid samples. It has a short fluid chamber having two electrodes that functions as three electrodes (one working electrode, one reference electrode and one blank electrode). The chamber provides a reservoir from which a sample fluid can be quickly drawn into the chamber through capillary action. The novel potential reverse and curve-fitting technology of the test sensor provided by the present invention can effectively eliminate most common interferents existing in the fluid samples.
Abstract: A reference electrode according to the present invention maintains continuity between an internal solution and measurement sample and measures the electrical potential of the measurement sample even if the measurement sample in a liquid junction of the reference electrode has air bubbles mixed therein. This reference electrode is provided with: a second body provided with a second internal solution chamber in which a second internal solution is housed and a liquid junction portion disposed in the second internal solution chamber such that the second internal solution and measurement sample that is to be measured come into contact; and an internal electrode disposed inside the second internal solution. The liquid junction portion is formed from a conduction component formed from a porous or fibrous component and an aperture adjacent to the conduction component.
Abstract: A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Input signals including multiple duty cycles of sequential excitation pulses and relaxations are input to the sample. One or more signals output from the sample within 300 ms of the input of an excitation pulse may be correlated with the analyte concentration of the sample to improve the accuracy and/or precision of the analysis. Determining the analyte concentration of the sample from these rapidly measured output values may reduce analysis errors arising from the hematocrit effect, mediator background, and other error sources.
Abstract: An apparatus for glycan analysis is disclosed. The apparatus includes a plurality of loading wells adapted to receive a plurality of samples; a plurality of capillaries arranged in correspondence with the loading wells, each of the capillaries including a first portion including a stacking gel and a second portion including a resolving gel; and a plurality of eluting wells arranged in correspondence with the capillaries and adapted to receive a portion of the samples having traversed the capillaries.
Abstract: A method and apparatus are provided, in which an observation volume is defined by a volume where light from illumination means and a field of view of detection means overlap. The central axes of said light from the illumination means and said field of view of the detection means are non-parallel, and the sample is transported through the observation volume during imaging, preferably by rotation of a sample container holding the sample.
Type:
Grant
Filed:
August 27, 2015
Date of Patent:
February 2, 2021
Assignee:
SINGLE TECHNOLOGIES AB
Inventors:
Bengt Sahlgren, Raoul Stubbe, Johan Strömqvist
Abstract: Conventionally, only a pair of electrodes is provided and nanopores arranged in parallel are connected by an electrolyte solution, and therefore a change in an ion current to be measured is a sum of changes in ion currents generated in the respective nanopores.
Abstract: An ITP-based system and a method are provided. ITP is used to focus a sample of interest and deliver a high concentration target to a pre-functionalized surface comprising immobilized probes, thus enabling rapid reaction at the sensor site.
Type:
Grant
Filed:
November 28, 2014
Date of Patent:
January 12, 2021
Assignee:
TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
Abstract: This disclosure provides an apparatus and a method for quickly, efficiently and continuously fractionating biomolecules, such as DNAs and proteins based on size and other factors, while allowing imaging of the separated biomolecules as they are processed within the apparatus. The apparatus employs angled nanochannels to first preconcentrate and then separate like molecules. Its embodiments offer improved detection sensitivity and separation resolution over existing technologies and multiplexing capabilities.
Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
Type:
Grant
Filed:
September 1, 2014
Date of Patent:
January 5, 2021
Assignee:
Dräger Safety AG & Co. KGaA
Inventors:
Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
Abstract: An analyte concentration can be measured at an electrochemical detector using a waveform that includes a reductive voltage. The waveform may include three or four different voltages, in which at least one of the voltage values is reductive. One or more current or charge values can be measured during at least part of a reductive voltage portion of the waveform. The analyte concentration can be calculated based on the measured one or more current or charge values.
Abstract: A sensor element includes an element body having an elongate rectangular parallelepiped shape and including solid electrolyte layers with oxygen ion conductivity, an outer pump electrode disposed on a first surface of the element body, and a protective layer covering at least a part of a second surface of the element body on a side opposite to the first surface and including one or more exposed spaces (a lower space) to which the second surface is exposed.
Type:
Grant
Filed:
March 18, 2016
Date of Patent:
December 29, 2020
Assignee:
NGK INSULATORS, LTD.
Inventors:
Takashi Hino, Mika Murakami, Koichi Masuda, Hironori Sakakibara
Abstract: Methods, devices, and systems for performing isoelectric focusing reactions are described. The systems or devices disclosed herein may comprise fixtures that have a membrane. In some instances, the disclosed devices may be designed to perform isoelectric focusing or other separation reactions followed by further characterization of the separated analytes using mass spectrometry. The disclosed methods, devices, and systems provide for fast, accurate separation and characterization of protein analyte mixtures or other biological molecules by isoelectric point.
Type:
Grant
Filed:
March 3, 2020
Date of Patent:
December 22, 2020
Assignee:
INTABIO, INC.
Inventors:
Erik Gentalen, Scott Mack, Eric Gwerder, Luc Bousse
Abstract: A sensor element includes an element body having an elongate rectangular parallelepiped shape and including solid electrolyte layers with oxygen ion conductivity, an outer pump electrode disposed on a first surface of the element body, and a protective layer covering at least a part of the first surface of the element body and including one or more exposed spaces (an upper space) to which the first surface is exposed.
Type:
Grant
Filed:
March 18, 2016
Date of Patent:
December 15, 2020
Assignee:
NGK INSULATORS, LTD.
Inventors:
Takashi Hino, Mika Murakami, Koichi Masuda, Hironori Sakakibara
Abstract: Devices and methods for characterization of samples are provided. Samples may comprise one or more analytes. Some methods described herein include performing enrichment steps on a device. Some methods described herein include performing mobilization of analytes. Analytes may then be further processed and characterized.
Abstract: A sensor element includes an element body having an elongate rectangular parallelepiped shape and including solid electrolyte layers with oxygen ion conductivity, an outer pump electrode disposed on a first surface of the element body, and a protective layer covering at least a part of the first surface of the element body and including one or more spaces (an upper space) that are present apart from the first surface in a direction perpendicular to the first surface.
Type:
Grant
Filed:
March 18, 2016
Date of Patent:
December 1, 2020
Assignee:
NGK INSULATORS, LTD.
Inventors:
Takashi Hino, Mika Murakami, Koichi Masuda, Hironori Sakakibara
Abstract: Provided herein are devices and methods for reducing the negative effects of bubble formation on the detection, quantification and/or monitoring of analytes.
Type:
Grant
Filed:
August 5, 2015
Date of Patent:
November 24, 2020
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Richard Ferguson, Gary Martin Oddie, Nathan Lawrence, Andrew Meredith, Laurent Pirolli, Emma Irene Corcoran
Abstract: The synthesis of silver nanoparticles (AgNPs)/meso-porous silicon (PSi) nanocomposite and its effective use as efficient chemical sensor and photocatalyst are described. The PSi was prepared via a simple stain etching of Si microparticles in HF/HNO3 aqueous solution, followed by the deposition of AgNPs onto stain etched PSi by the immersion plating technique. The resultant nanocomposite is used successfully for (i) enhanced electro-oxidation and quantification of ascorbic acid (AA) on modified glassy carbon electrode and (ii) for the photo-reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) under direct visible light irradiation in the presence of citric acid.
Type:
Grant
Filed:
July 10, 2019
Date of Patent:
October 20, 2020
Assignee:
Najran University
Inventors:
Farid A Harraz, Mohd Faisal, Mohammad S Al-Assiri, Ahmed Mohamed El-Toni
Abstract: A microcomputer calculates the concentration of ammonia contained in exhaust gas. The microcomputer repeatedly obtains from a first ammonia detection section a first ammonia electromotive force EMF1 whose value changes with both the concentrations of ammonia and a flammable gas contained in the exhaust gas. The microcomputer outputs, as ammonia concentration information at the present point in time, ammonia concentration information representing the ammonia concentration at the point 0.5 sec prior to the present point in time. The microcomputer sets a rich spike flag Fs when a first ammonia electromotive force change amount ?EMF1 is smaller than a value obtained by multiplying a start determination value by ?1. When the rich spike flag Fs is set, the microcomputer sets the ammonia concentration information at the present point in time to the value of the ammonia concentration information at the point immediately before the rich spike flag Fs is set.
Abstract: A gas sensor includes a sensor element having a detection section at a distal end portion thereof, and an element cover that surrounds a periphery of the sensor element. The sensor element includes electrodes and formed on a surface of a solid electrolyte body, a heater, and a porous protective layer formed on an outside of the detection section. The element cover includes a cover member with gas flow holes on a side surface and a gas passage is formed between the cover member and the sensor element. A distance between the cover member and the side surface of the sensor element in a direction perpendicular to an axis of the sensor element is in a range of 0.2 mm to 0.8 mm in the entire region of the gas passage leading from the gas flow holes to the detecting section.