Patents Examined by Matthew Smith
  • Patent number: 7795121
    Abstract: A method for manufacturing a semiconductor device is provided, which includes forming a gate insulating film on a semiconductor substrate, forming a first layer on the gate insulating film, the first layer containing a first p-type impurity and, an amorphous or polycrystalline formed of Si1-xGex (0?x<0.25), subjecting the first layer to a first heat treatment wherein the first layer is heated for 1 msec or less at a temperature higher than 1100° C., forming a second layer on the first layer, the second layer containing a second p-type impurity and formed of amorphous silicon or polycrystalline silicon, the second p-type impurity having a smaller covalent bond radius than that of the first p-type impurity, and subjecting the second layer to a second heat treatment to heat the second layer at a temperature ranging from 800° C. to 1100° C.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: September 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsunehiro Ino, Akio Kaneko, Nobutoshi Aoki
  • Patent number: 7795145
    Abstract: A method of patterning the surface of a substrate with at least one organic semiconducting compound including: (a) providing a stamp having a surface including a plurality of indentations formed therein defining an indentation pattern contiguous with a stamping surface and defining a stamping pattern, (b) coating the stamping surface with at least one compound (C1) capable of binding to the surface of the substrate and at least one organic semiconducting compound (S), (c) contacting at least a portion of the surface of a substrate with the stamping surface to allow deposition of the compound (C1) on the substrate, (d) removing the stamping surface to provide a pattern of binding sites on the surface of the substrate, (e) applying a plurality of crystallites of the organic semiconducting compound (S) to the surface of the substrate to bind at least a portion of the applied crystallites to the binding sites on the surface of the substrate.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: September 14, 2010
    Assignees: BASF Aktiengesellschaft, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Marcos Gomez, Peter Erk, Frauke Richter, Zhenan Bao, Shuhong Liu
  • Patent number: 7795136
    Abstract: A metal wiring of a semiconductor device and a forming method thereof are provided. A dielectric layer is formed on a semiconductor substrate including a lower metal wiring. A SOG (spin on glass) coating layer is formed on the dielectric layer to inhibit material from another layer from infiltrating into the dielectric layer.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: September 14, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Kyung Min Park
  • Patent number: 7786494
    Abstract: A thin film transistor includes a gate electrode; an active layer formed of an oxide and insulated from the gate electrode; and a source electrode and a drain electrode formed of an oxide on the active layer such that the source electrode and the drain electrode are insulated from the gate electrode and electrically connected to the active layer, wherein the active layer, the source and the drain electrode are formed using an atomic layer deposition (ALD) and an insitu process, and a root mean square (RMS) value of the surface roughness of the active layer which contacts with the source and drain electrodes is less than 1 nm in order to reduce the contact resistance between the active layer and the source and drain electrodes, a method of manufacturing the same, an organic light emitting display apparatus including the thin film transistor, and a method of manufacturing the same.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: August 31, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Hun-Jung Lee, Jae-Kyeong Jeong, Yeon-Gon Mo
  • Patent number: 7785982
    Abstract: Methods for electrodepositing germanium on various semiconductor substrates such as Si, Ge, SiGe, and GaAs are provided. The electrodeposited germanium can be formed as a blanket or patterned film, and may be crystallized by solid phase epitaxy to the orientation of the underlying semiconductor substrate by subsequent annealing. These plated germanium layers may be used as the channel regions of high-mobility channel field effect transistors (FETs) in complementary metal oxide semiconductor (CMOS) circuits.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Devendra K. Sadana, Katherine L. Saenger
  • Patent number: 7785922
    Abstract: The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors, as well as us of patterned substrates to grow oriented nanowires. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrificial growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: August 31, 2010
    Assignee: Nanosys, Inc.
    Inventor: Virginia Robbins
  • Patent number: 7781335
    Abstract: A method for fabricating a semiconductor device includes the steps of: (a) forming a first insulating film having moisture absorbency on a substrate; (b) forming a dummy contact hole and a contact hole in the first insulating film; (c) heat-treating the substrate, thereby removing water contained in the first insulating film; and (d) forming a contact and a dummy contact. The heat treatment in the step (c) removes water contained in the first insulating film through the contact hole and the dummy contact hole.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: August 24, 2010
    Assignee: Panasonic Corporation
    Inventor: Shunsuke Isono
  • Patent number: 7781303
    Abstract: A method for preparing a shallow trench isolation comprising the steps of forming at least one trench in a semiconductor substrate, performing an implanting process to implant nitrogen-containing dopants into an upper sidewall of the trench such that the concentration of the nitrogen-containing dopants in the upper sidewall is higher than that in the bottom sidewall of the trench, forming a spin-on dielectric layer filling the trench and covering the surface of the semiconductor substrate, performing a thermal oxidation process to form a silicon oxide layer covering the inner sidewall. Since the nitrogen-containing dopants can inhibit the oxidation rate and the concentration of the nitrogen-containing dopants in the upper inner sidewall is higher than that in the bottom inner sidewall of the trench, the thickness of the silicon oxide layer formed by the thermal oxidation process is larger at the bottom portion than at the upper portion of the trench.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 24, 2010
    Assignee: Promos Technologies Inc.
    Inventor: Hai Jun Zhao
  • Patent number: 7781237
    Abstract: An apparatus includes a first support structure configured to support an element that has an alignment marker provided with at least one height difference. The apparatus also includes an alignment sensor comprising a light source that is configured to provide a light beam that illuminates the alignment marker; and at least one detector configured to detect the at least one height difference of the alignment marker by analyzing the light beam reflected by the alignment marker. Such an apparatus may be used to align of the element with respect to the first support structure.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: August 24, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Gert-Jan Heerens, Anastasius Jacobus Anicetus Bruinsma, Jacob Fredrik Frisco Klinkhamer, Bastiaan Lambertus Wilhelmus Marinus Van De Ven, Hubert Adriaan Van Mierlo, Willem Arthur Vliegenthart
  • Patent number: 7781259
    Abstract: In a method of manufacturing a semiconductor device of the invention, a rigid substrate which supports one or more semiconductor elements on a surface of the substrate and is clamped between an upper mold and a lower mold of an encapsulation mold at a time of resin encapsulation is provided, so that a vent-end edge portion of the substrate corresponding to a vent end of the encapsulation mold has a thickness smaller than a thickness of other portions of the substrate. The substrate is disposed in the encapsulation mold, and resin is injected into a cavity between the upper mold and the substrate to encapsulate the semiconductor elements with the resin.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 24, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Youhei Nagahama, Katsunori Wako, Yuichi Asano, Masanori Takahashi, Haruo Kojima, Masamichi Fujimoto, Hiroshi Ohtsubo, Yuki Yasuda
  • Patent number: 7781272
    Abstract: A method for manufacturing the pixel structure of a liquid crystal display is provided. In comparison to using seven masks in the conventional lithographic processes for the pixel structure, only four masks are required in the manufacturing method of the present invention. Therefore, the cost of manufacturing is reduced. Furthermore, the unnecessary multilayer structures on the display area can be removed in the manufacturing processes, and thus, enhance the transmittance thereof.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 24, 2010
    Assignee: Au Optronics Corp.
    Inventor: Chen-Yueh Li
  • Patent number: 7776760
    Abstract: The present invention is directed to systems and methods for nanowire growth. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial vertically oriented nanowire growth including providing a substrate material having one or more nucleating particles deposited thereon in a reaction chamber, introducing an etchant gas into the reaction chamber at a first temperature which gas aids in cleaning the surface of the substrate material, contacting the nucleating particles with at least a first precursor gas to initiate nanowire growth, and heating the alloy droplet to a second temperature, whereby nanowires are grown at the site of the nucleating particles. The etchant gas may also be introduced into the reaction chamber during growth of the wires to provide nanowires with low taper.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: August 17, 2010
    Assignee: Nanosys, Inc.
    Inventor: David Taylor
  • Patent number: 7776718
    Abstract: It is an object to form single-crystalline semiconductor layers with high mobility over approximately the entire surface of a glass substrate even when the glass substrate is increased in size. A first single-crystalline semiconductor substrate is bonded to a substrate having an insulating surface, the first single-crystalline semiconductor substrate is separated such that a first single-crystalline semiconductor layer is left remaining over the substrate having an insulating surface, a second single-crystalline semiconductor substrate is bonded to the substrate having an insulating surface so as to overlap with at least part of the first single-crystalline semiconductor layer provided over the substrate having an insulating surface, and the second single-crystalline semiconductor substrate is separated such that a second single-crystalline semiconductor layer is left remaining over the substrate having an insulating surface.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 17, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Patent number: 7776759
    Abstract: A method for forming an integrated circuit having openings in a mold layer and for producing capacitors is disclosed. In one embodiment, nanotubes or nanowires are grown vertically on a horizontal substrate surface. The nanotubes or nanowires serve as a template for forming openings in a mold layer. The substrate is covered with a mold material after the formation of the nanowires or nanotubes. One embodiment provides mold layers having openings with a much higher aspect ratio.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 17, 2010
    Assignee: Qimonda AG
    Inventors: Peter Lahnor, Odo Wunnicke, Johannes Heitmann, Peter Moll, Andreas Orth
  • Patent number: 7776684
    Abstract: Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 17, 2010
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Robert S. Chau, Vivek De, Suman Datta, Dinesh Somasekhar
  • Patent number: 7776648
    Abstract: A circuit die is disposed into a region defined by a mold. A molding material is then introduced into the region to encapsulate the circuit die. Prior to substantial curing of the molding material, at least a portion of the molding material is removed from over a surface of the circuit die, creating a recessed region in the encapsulating material. A heat spreader may then be disposed within the recessed region, as well as over the top surface of the encapsulating material. The heat spreader may have a downset that substantially aligns with the recessed region and reduces the distance between the heat spreader and the spacer for better heat dissipation.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 17, 2010
    Assignee: Agere Systems Inc.
    Inventors: Kok Hua Chua, Budi Njoman, Zheng Peng Xiong
  • Patent number: 7776732
    Abstract: A method is disclosed to reduce parasitic capacitance in a metal high dielectric constant (MHK) transistor. The method includes forming a MHK gate stack upon a substrate, the MHK gate stack having a bottom layer of high dielectric constant material, a middle layer of metal, and a top layer of one of amorphous silicon or polycrystalline silicon. The method further forms a depleted sidewall layer on sidewalls of the MHK gate stack so as to overlie the middle layer and the top layer, and not the bottom layer. The depleted sidewall layer is one of amorphous silicon or polycrystalline silicon. The method further forms an offset spacer layer over the depleted sidewall layer and over exposed surfaces of the bottom layer.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Isaac Lauer, Renee T. Mo, Jeffrey W. Sleight
  • Patent number: 7776669
    Abstract: A thin film transistor includes a substrate; a semiconductor layer disposed on the substrate, and including polycrystalline silicon having a constant directivity and a uniformly distributed crystal grain boundary; a gate insulating layer; a gate electrode; an interlayer insulating layer; and source and drain electrodes.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: August 17, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Ji-Su Ahn
  • Patent number: 7772073
    Abstract: A method is provided for forming a semiconductor device containing a buried threshold voltage adjustment layer. The method includes providing a substrate containing an interface layer, depositing a first high-k film on the interface layer, depositing a threshold voltage adjustment layer on the first high-k film, and depositing a second high-k film on the threshold voltage adjustment layer such that the threshold voltage adjustment layer is interposed between the first and second high-k films. The semiconductor device containing a patterned gate stack is described.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: August 10, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Robert D. Clark, Gerrit J. Leusink
  • Patent number: 7772087
    Abstract: The invention relates to a method of catastrophic transfer of a thin film including implanting in a source substrate a first species of ions or gas at a given depth and a second species of ions or gas, the first species being adapted to generate defects and the second species being adapted to occupy those defects. The process further includes applying a stiffener in intimate contact with the source substrate, applying a heat treatment to that source substrate, at a given temperature for a given time, so as to create, substantially at the given depth, a buried weakened zone, without initiating the thermal splitting of a thin film, and applying a localized amount of energy, for example mechanical stresses, to that source substrate so as to provoke the catastrophic splitting of a thin film, the thin film having a substantially planar face opposite to the face surface of the source substrate.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: August 10, 2010
    Assignees: Commissariat A l'Energie Atomique, S.O.I. Tec Silicon On Insulator Technologies
    Inventors: Nguyet-Phuong Nguyen, Ian Cayrefourcq, Christelle Lagahe-Blanchard