Abstract: A method for manufacturing a semiconductor device is provided, which includes forming a gate insulating film on a semiconductor substrate, forming a first layer on the gate insulating film, the first layer containing a first p-type impurity and, an amorphous or polycrystalline formed of Si1-xGex (0?x<0.25), subjecting the first layer to a first heat treatment wherein the first layer is heated for 1 msec or less at a temperature higher than 1100° C., forming a second layer on the first layer, the second layer containing a second p-type impurity and formed of amorphous silicon or polycrystalline silicon, the second p-type impurity having a smaller covalent bond radius than that of the first p-type impurity, and subjecting the second layer to a second heat treatment to heat the second layer at a temperature ranging from 800° C. to 1100° C.
Abstract: A method of patterning the surface of a substrate with at least one organic semiconducting compound including: (a) providing a stamp having a surface including a plurality of indentations formed therein defining an indentation pattern contiguous with a stamping surface and defining a stamping pattern, (b) coating the stamping surface with at least one compound (C1) capable of binding to the surface of the substrate and at least one organic semiconducting compound (S), (c) contacting at least a portion of the surface of a substrate with the stamping surface to allow deposition of the compound (C1) on the substrate, (d) removing the stamping surface to provide a pattern of binding sites on the surface of the substrate, (e) applying a plurality of crystallites of the organic semiconducting compound (S) to the surface of the substrate to bind at least a portion of the applied crystallites to the binding sites on the surface of the substrate.
Type:
Grant
Filed:
February 15, 2006
Date of Patent:
September 14, 2010
Assignees:
BASF Aktiengesellschaft, The Board of Trustees of the Leland Stanford Junior University
Inventors:
Marcos Gomez, Peter Erk, Frauke Richter, Zhenan Bao, Shuhong Liu
Abstract: A metal wiring of a semiconductor device and a forming method thereof are provided. A dielectric layer is formed on a semiconductor substrate including a lower metal wiring. A SOG (spin on glass) coating layer is formed on the dielectric layer to inhibit material from another layer from infiltrating into the dielectric layer.
Abstract: A thin film transistor includes a gate electrode; an active layer formed of an oxide and insulated from the gate electrode; and a source electrode and a drain electrode formed of an oxide on the active layer such that the source electrode and the drain electrode are insulated from the gate electrode and electrically connected to the active layer, wherein the active layer, the source and the drain electrode are formed using an atomic layer deposition (ALD) and an insitu process, and a root mean square (RMS) value of the surface roughness of the active layer which contacts with the source and drain electrodes is less than 1 nm in order to reduce the contact resistance between the active layer and the source and drain electrodes, a method of manufacturing the same, an organic light emitting display apparatus including the thin film transistor, and a method of manufacturing the same.
Type:
Grant
Filed:
May 9, 2008
Date of Patent:
August 31, 2010
Assignee:
Samsung Mobile Display Co., Ltd.
Inventors:
Hun-Jung Lee, Jae-Kyeong Jeong, Yeon-Gon Mo
Abstract: Methods for electrodepositing germanium on various semiconductor substrates such as Si, Ge, SiGe, and GaAs are provided. The electrodeposited germanium can be formed as a blanket or patterned film, and may be crystallized by solid phase epitaxy to the orientation of the underlying semiconductor substrate by subsequent annealing. These plated germanium layers may be used as the channel regions of high-mobility channel field effect transistors (FETs) in complementary metal oxide semiconductor (CMOS) circuits.
Type:
Grant
Filed:
January 5, 2007
Date of Patent:
August 31, 2010
Assignee:
International Business Machines Corporation
Inventors:
Stephen W. Bedell, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Devendra K. Sadana, Katherine L. Saenger
Abstract: The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors, as well as us of patterned substrates to grow oriented nanowires. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrificial growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
Abstract: A method for fabricating a semiconductor device includes the steps of: (a) forming a first insulating film having moisture absorbency on a substrate; (b) forming a dummy contact hole and a contact hole in the first insulating film; (c) heat-treating the substrate, thereby removing water contained in the first insulating film; and (d) forming a contact and a dummy contact. The heat treatment in the step (c) removes water contained in the first insulating film through the contact hole and the dummy contact hole.
Abstract: A method for preparing a shallow trench isolation comprising the steps of forming at least one trench in a semiconductor substrate, performing an implanting process to implant nitrogen-containing dopants into an upper sidewall of the trench such that the concentration of the nitrogen-containing dopants in the upper sidewall is higher than that in the bottom sidewall of the trench, forming a spin-on dielectric layer filling the trench and covering the surface of the semiconductor substrate, performing a thermal oxidation process to form a silicon oxide layer covering the inner sidewall. Since the nitrogen-containing dopants can inhibit the oxidation rate and the concentration of the nitrogen-containing dopants in the upper inner sidewall is higher than that in the bottom inner sidewall of the trench, the thickness of the silicon oxide layer formed by the thermal oxidation process is larger at the bottom portion than at the upper portion of the trench.
Abstract: An apparatus includes a first support structure configured to support an element that has an alignment marker provided with at least one height difference. The apparatus also includes an alignment sensor comprising a light source that is configured to provide a light beam that illuminates the alignment marker; and at least one detector configured to detect the at least one height difference of the alignment marker by analyzing the light beam reflected by the alignment marker. Such an apparatus may be used to align of the element with respect to the first support structure.
Type:
Grant
Filed:
June 8, 2005
Date of Patent:
August 24, 2010
Assignee:
ASML Netherlands B.V.
Inventors:
Gert-Jan Heerens, Anastasius Jacobus Anicetus Bruinsma, Jacob Fredrik Frisco Klinkhamer, Bastiaan Lambertus Wilhelmus Marinus Van De Ven, Hubert Adriaan Van Mierlo, Willem Arthur Vliegenthart
Abstract: In a method of manufacturing a semiconductor device of the invention, a rigid substrate which supports one or more semiconductor elements on a surface of the substrate and is clamped between an upper mold and a lower mold of an encapsulation mold at a time of resin encapsulation is provided, so that a vent-end edge portion of the substrate corresponding to a vent end of the encapsulation mold has a thickness smaller than a thickness of other portions of the substrate. The substrate is disposed in the encapsulation mold, and resin is injected into a cavity between the upper mold and the substrate to encapsulate the semiconductor elements with the resin.
Abstract: A method for manufacturing the pixel structure of a liquid crystal display is provided. In comparison to using seven masks in the conventional lithographic processes for the pixel structure, only four masks are required in the manufacturing method of the present invention. Therefore, the cost of manufacturing is reduced. Furthermore, the unnecessary multilayer structures on the display area can be removed in the manufacturing processes, and thus, enhance the transmittance thereof.
Abstract: The present invention is directed to systems and methods for nanowire growth. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial vertically oriented nanowire growth including providing a substrate material having one or more nucleating particles deposited thereon in a reaction chamber, introducing an etchant gas into the reaction chamber at a first temperature which gas aids in cleaning the surface of the substrate material, contacting the nucleating particles with at least a first precursor gas to initiate nanowire growth, and heating the alloy droplet to a second temperature, whereby nanowires are grown at the site of the nucleating particles. The etchant gas may also be introduced into the reaction chamber during growth of the wires to provide nanowires with low taper.
Abstract: It is an object to form single-crystalline semiconductor layers with high mobility over approximately the entire surface of a glass substrate even when the glass substrate is increased in size. A first single-crystalline semiconductor substrate is bonded to a substrate having an insulating surface, the first single-crystalline semiconductor substrate is separated such that a first single-crystalline semiconductor layer is left remaining over the substrate having an insulating surface, a second single-crystalline semiconductor substrate is bonded to the substrate having an insulating surface so as to overlap with at least part of the first single-crystalline semiconductor layer provided over the substrate having an insulating surface, and the second single-crystalline semiconductor substrate is separated such that a second single-crystalline semiconductor layer is left remaining over the substrate having an insulating surface.
Type:
Grant
Filed:
June 20, 2008
Date of Patent:
August 17, 2010
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: A method for forming an integrated circuit having openings in a mold layer and for producing capacitors is disclosed. In one embodiment, nanotubes or nanowires are grown vertically on a horizontal substrate surface. The nanotubes or nanowires serve as a template for forming openings in a mold layer. The substrate is covered with a mold material after the formation of the nanowires or nanotubes. One embodiment provides mold layers having openings with a much higher aspect ratio.
Type:
Grant
Filed:
March 16, 2007
Date of Patent:
August 17, 2010
Assignee:
Qimonda AG
Inventors:
Peter Lahnor, Odo Wunnicke, Johannes Heitmann, Peter Moll, Andreas Orth
Abstract: Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
Type:
Grant
Filed:
March 30, 2007
Date of Patent:
August 17, 2010
Assignee:
Intel Corporation
Inventors:
Brian S. Doyle, Robert S. Chau, Vivek De, Suman Datta, Dinesh Somasekhar
Abstract: A circuit die is disposed into a region defined by a mold. A molding material is then introduced into the region to encapsulate the circuit die. Prior to substantial curing of the molding material, at least a portion of the molding material is removed from over a surface of the circuit die, creating a recessed region in the encapsulating material. A heat spreader may then be disposed within the recessed region, as well as over the top surface of the encapsulating material. The heat spreader may have a downset that substantially aligns with the recessed region and reduces the distance between the heat spreader and the spacer for better heat dissipation.
Abstract: A method is disclosed to reduce parasitic capacitance in a metal high dielectric constant (MHK) transistor. The method includes forming a MHK gate stack upon a substrate, the MHK gate stack having a bottom layer of high dielectric constant material, a middle layer of metal, and a top layer of one of amorphous silicon or polycrystalline silicon. The method further forms a depleted sidewall layer on sidewalls of the MHK gate stack so as to overlie the middle layer and the top layer, and not the bottom layer. The depleted sidewall layer is one of amorphous silicon or polycrystalline silicon. The method further forms an offset spacer layer over the depleted sidewall layer and over exposed surfaces of the bottom layer.
Type:
Grant
Filed:
September 10, 2007
Date of Patent:
August 17, 2010
Assignee:
International Business Machines Corporation
Inventors:
Leland Chang, Isaac Lauer, Renee T. Mo, Jeffrey W. Sleight
Abstract: A thin film transistor includes a substrate; a semiconductor layer disposed on the substrate, and including polycrystalline silicon having a constant directivity and a uniformly distributed crystal grain boundary; a gate insulating layer; a gate electrode; an interlayer insulating layer; and source and drain electrodes.
Abstract: A method is provided for forming a semiconductor device containing a buried threshold voltage adjustment layer. The method includes providing a substrate containing an interface layer, depositing a first high-k film on the interface layer, depositing a threshold voltage adjustment layer on the first high-k film, and depositing a second high-k film on the threshold voltage adjustment layer such that the threshold voltage adjustment layer is interposed between the first and second high-k films. The semiconductor device containing a patterned gate stack is described.
Abstract: The invention relates to a method of catastrophic transfer of a thin film including implanting in a source substrate a first species of ions or gas at a given depth and a second species of ions or gas, the first species being adapted to generate defects and the second species being adapted to occupy those defects. The process further includes applying a stiffener in intimate contact with the source substrate, applying a heat treatment to that source substrate, at a given temperature for a given time, so as to create, substantially at the given depth, a buried weakened zone, without initiating the thermal splitting of a thin film, and applying a localized amount of energy, for example mechanical stresses, to that source substrate so as to provoke the catastrophic splitting of a thin film, the thin film having a substantially planar face opposite to the face surface of the source substrate.
Type:
Grant
Filed:
October 28, 2004
Date of Patent:
August 10, 2010
Assignees:
Commissariat A l'Energie Atomique, S.O.I. Tec Silicon On Insulator Technologies
Inventors:
Nguyet-Phuong Nguyen, Ian Cayrefourcq, Christelle Lagahe-Blanchard