Patents Examined by Maureen Gramaglia
  • Patent number: 8636871
    Abstract: A plasma processing apparatus includes a first electrode and a second electrode so arranged in the upper portion of a processing chamber as to face a mounting table, a gas supply unit for supplying a processing gas between the first electrode and the second electrode, a RF power supply unit for applying a RF power between the first electrode and the second electrode for converting the process gas supplied between the electrodes into a plasma, and a gas exhaust unit for evacuating the inside of the processing chamber to a vacuum level from the lower portion of the processing chamber. Since the electron temperature in the plasma is low near a substrate on the mounting table, damage to the substrate caused by the plasma can be suppressed. In addition, since a metal can be used as a material for the processing chamber, the processing chamber can have good temperature controllability.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: January 28, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Ikuo Sawada, Peter Ventzek, Tatsuro Ohshita, Kazuyoshi Matsuzaki, Songyun Kang
  • Patent number: 8636873
    Abstract: A structure, for use in a processing chamber of a plasma processing apparatus in which a plasma process is performed on a target substrate, includes a base member at least having a first surface and a second surface; and a thermally sprayed insulating film covering the first surface. Further, the structure includes an insulating protection member covering the second surface and made of a material having a linear expansion coefficient different from that of the base member; and an insulating layer interposed between the thermally sprayed insulating film and the insulating protection member to prevent a contact therebetween. The thermally sprayed insulating film, the insulating protection member and the insulating layer constitute an insulating surface covering the first surface and the second surface.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 28, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masakazu Higuma, Shinji Muto
  • Patent number: 8628640
    Abstract: A plasma processing unit of the present invention includes a processing container whose inner pressure can be reduced, a first electrode arranged in the processing container, a process gas supplying unit that supplies a process gas into the processing container, a high-frequency electric power source that outputs high-frequency electric power having a frequency in a VHF band, a matching unit electrically connected to the high-frequency electric power source and the first electrode for impedance matching, and a transmission line that transmits the high-frequency electric power from the high-frequency electric power source to the matching unit. A substrate to be processed is adapted to be arranged in the processing container. The high-frequency electric power transmitted to the first electrode is adapted to generate plasma in such a manner that the substrate to be processed can undergo a plasma process by means of the plasma.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: January 14, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Toshihiro Hayami, Masahide Iwasaki, Junichi Takahira, Kazuyoshi Watanabe, Shinichi Komatsu, Yuichi Sasaki
  • Patent number: 8623144
    Abstract: An apparatus for manufacturing a large-area carbon nanotube film includes a reactor chamber, a helical-shaped substrate, and a supporter. The reactor chamber includes an inlet and an outlet. The inlet and the outlet are aligned on an axis of the reactor chamber. The helical-shaped substrate and the supporter are located wholly inside the reactor chamber. The supporter is moveable along the axis of the reactor chamber, and the helical-shaped substrate is supported by the supporter.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: January 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 8607732
    Abstract: In an in-liquid plasma film-forming apparatus having: a vessel 1 being capable of accommodating a substrate “S” and a liquid “L” including raw material therein; an electrode 2 for in-liquid plasma, electrode 2 which is disposed in the vessel 1; an electric power device 3 for supplying electricity to the electrode 2 for in-liquid plasma; the electrode 2 for in-liquid plasma is equipped with: a main electrode 21 having a discharging end 22; an auxiliary electrode 26 not only facing the discharging end 22 but also being disposed between the discharging end 22 and the substrate “S” that face each other; and a plasma generating unit 29 having a space that is demarcated by a surface 22a of the discharging end 22 and a surface 26a of the auxiliary electrode 26 facing the surface 22a, and being for generating plasma by means of electricity being supplied to the main electrode 21.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 17, 2013
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, National University Corporation Ehime University
    Inventors: Kenji Shibata, Toshihisa Shimo, Kyoko Kumagai, Hidetaka Hayashi, Shinya Okuda, Shinfuku Nomura, Hiromichi Toyota
  • Patent number: 8603249
    Abstract: A lift pin driving device and a manufacturing apparatus having the device are provided. The device includes drive unit including a single drive motor that drives a pin plate, a plurality of timing belts and a plurality of pulleys. The pin plate, which supports a plurality of lift pins thereon, is moved by the pulleys, operated in conjunction with the motor through the timing belts. A tensioner controls a tension of the timing belts. The tensioner may be controlled to provide precise rectilinear movement without leaning, and to prevent the timing belts from sagging. The device efficiently controls the tension of the timing belts and allows the lift pins to be precisely moved upwards or downwards such that a substrate positioned thereon may maintain a horizontal position while being moved upwards or downwards.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: December 10, 2013
    Assignee: LG Electronics Inc.
    Inventors: Jong Sun Kim, Chang Keun Lee, Won Ki Jeong
  • Patent number: 8603248
    Abstract: A system and method for evenly heating a substrate placed in a wafer carrier used in wafer treatment systems such as chemical vapor deposition reactors, wherein a first pattern of wafer compartments is provided on the top of the wafer carrier, such as one or more rings of wafer carriers, and a second pattern of inlaid material dissimilar to the wafer carrier material is inlaid on the bottom of the wafer carrier, and the second pattern of inlaid material is substantially the opposite of the first pattern of wafer compartments, such that there are at least as many material interfaces in intermediate regions without wafer compartments as there are in wafer carrying regions with wafers and wafer compartments.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: December 10, 2013
    Assignee: Veeco Instruments Inc.
    Inventors: Alex Gurary, Eric A. Armour, Richard Hoffman, Jonathan Cruel
  • Patent number: 8591657
    Abstract: Metal corrosion and substrate contamination can be suppressed, and process quality and yield can be improved. A substrate processing apparatus comprises: a process chamber; a substrate holder; a cover part closing and opening the process chamber; a substrate holder stage; a rotary mechanism rotating the substrate holder stage; a rotation shaft inserted through the cover part and connected to the substrate holder stage and the rotary mechanism so that a first gas ejection port is formed therebetween; a first gas stagnant part surrounded by the rotary mechanism, the cover part, and the rotation shaft; a second gas ejection port formed at the substrate holder stage; a second gas stagnant part formed at the rotation shaft and communicating with the process chamber via the second gas ejection port; and a flow port formed at the rotation shaft for connecting the first and second gas stagnant parts.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 26, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Takayuki Nakada, Tomoyuki Matsuda, Shinya Morita
  • Patent number: 8580075
    Abstract: A method and system of for introducing an active material to a chemical process in which a processing element including a passive component and an active element is installed within the system and exposed to a chemical process performed within the system. As the chemical process proceeds, the passive component erodes and thereby exposes the active component embedded therein. The introduction of the active component to the chemical process alters the chemical process.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: November 12, 2013
    Assignee: Tokyo Electron Limited
    Inventors: John A. Hughes, Sandra Hyland, Ralph Kim
  • Patent number: 8557044
    Abstract: A shadow mask, a method of manufacturing the shadow mask, and a method of forming a thin film using the shadow mask are provided. The shadow mask includes an upper layer and a lower layer. The upper layer includes a first opening. The lower layer is formed on a lower surface of the upper layer around the first opening and includes an opening having the same size as the first opening. When the thin film is formed using the shadow mask, the lower layer of the shadow mask is close to the edge of a cavity of a substrate, and a position on which the thin film may be formed as defined by the lower layer of the shadow mask. Therefore, the thickness of the thin film can be uniform.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-whan Chung, Seok-jin Kang, Hyun-koo Jeong
  • Patent number: 8544411
    Abstract: A plasma processing apparatus comprises a processing chamber in which a plurality of substrates are stacked and accommodated; a pair of electrodes extending in the stacking direction of the plurality of substrates, which are disposed at one side of the plurality of substrates in said processing chamber, and to which high frequency electricity is applied; and a gas supply member which supplies processing gas into a space between the pair of electrodes.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: October 1, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Kazuyuki Toyoda, Yasuhiro Inokuchi, Motonari Takebayashi, Tadashi Kontani, Nobuo Ishimaru
  • Patent number: 8545670
    Abstract: A plasma processing apparatus for processing a substrate using plasma includes a first electrode configured to mount the substrate, a second electrode disposed to face the first electrode with a predetermined space, a chamber containing the first electrode and the second electrode, the chamber being capable of adjusting an inside atmosphere, a first electric power source device configured to apply a first RF voltage for controlling a self-bias voltage generated on the substrate to the first electrode, the first electric power source device applying a substantially constant width and a substantially constant value in a peak-to-peak voltage of an RF voltage of a first frequency at intervals, and a second electric power source device configured to apply a second RF voltage of a second frequency for generating plasma between the first and second electrodes to one of the first electrode and the second electrode.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiro Kojima, Hisataka Hayashi, Akio Ui
  • Patent number: 8545671
    Abstract: A plasma processing apparatus for generating a plasma in a plasma processing space in a processing chamber and plasma-processing a target object includes a plasma-exciting high frequency power supply for applying a plasma-exciting high frequency power. Further, the plasma processing apparatus includes at least one of a potential-controlling high frequency power supply for applying a potential-controlling high frequency power having a frequency lower than that of the plasma-exciting high frequency power and a DC power supply for applying a DC voltage; and a mounting table for mounting thereon a target object. Furthermore, the plasma processing apparatus includes an auxiliary electrode, provided at a position outer side of the target object mounted on the mounting table while facing the mounting table, connected to at least one of the potential-controlling high frequency power supply and the DC power supply.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: October 1, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Masanobu Honda
  • Patent number: 8535444
    Abstract: Provided is a substrate processing apparatus. The substrate processing apparatus comprises a reaction vessel configured to process a substrate, and a heating device. The heating device comprises at least one sidewall insulating part surrounding the reaction vessel, a ceiling insulating part placed on the sidewall insulating part and comprising a plurality of stress relief grooves, and a heating element installed at an inner side of the sidewall insulating part.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: September 17, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hitoshi Murata, Tetsuya Kosugi, Shinobu Sugiura
  • Patent number: 8529730
    Abstract: In a plasma processing apparatus including a vacuum-evacuable processing chamber, a first lower electrode for supporting a substrate to be processed thereon is disposed in the processing chamber and an upper electrode is disposed above the first lower electrode to face the first lower electrode. Further, a second lower electrode is disposed under the first lower electrode while being electrically isolated from the first lower electrode. A processing gas supply unit supplies a processing gas into a space between the upper electrode and the first lower electrode. A first high frequency power supply unit applies a first high frequency power of a first frequency to the first lower electrode, and a second high frequency power supply unit applies a second high frequency power of a second frequency higher than the first frequency to the second lower electrode.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 10, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Yohei Yamazawa
  • Patent number: 8518184
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 8512580
    Abstract: A method of fabricating a thin liquid crystal display device including a glass substrate having a flat surface. The method includes etching at least one surface of a liquid crystal display, panel, and grinding the surface of the liquid crystal display panel so as to planarize the etched liquid crystal display panel.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: August 20, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Gyu Su Cho, Sung Guen Park, Byung Chul Kim
  • Patent number: 8506753
    Abstract: A plasma processing apparatus includes a process container configured to accommodate a target substrate and to be vacuum-exhausted. A first electrode and a second electrode are disposed opposite each other within the process container. The first electrode includes an outer portion and an inner portion both facing the second electrode such that the outer portion surrounds the inner portion. An RF power supply is configured to apply an RF power to the outer portion of the first electrode. A DC power supply is configured to apply a DC voltage to the inner portion of the first electrode. A process gas supply unit is configured to supply a process gas into the process container, wherein plasma of the process gas is generated between the first electrode and the second electrode.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: August 13, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Naoki Matsumoto, Chishio Koshimizu, Akira Koshiishi
  • Patent number: 8500953
    Abstract: An edge ring assembly surrounds a substrate support surface in a plasma etching chamber. The edge ring assembly comprises an edge ring and a dielectric spacer ring. The dielectric spacer ring, which surrounds the substrate support surface and which is surrounded by the edge ring in the radial direction, is configured to insulate the edge ring from the baseplate. Incorporation of the edge ring assembly around the substrate support surface can decrease the buildup of polymer at the underside and along the edge of a substrate and increase plasma etching uniformity of the substrate.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: August 6, 2013
    Assignee: Lam Research Corporation
    Inventors: Jeremy Chang, Andreas Fischer, Babak Kadkhodayan
  • Patent number: 8500907
    Abstract: The invention relates to a masking system for masking a cylinder bore (2) of a combustion engine (3) during a thermal coating procedure including a masking body (4) which can be placed during the thermal coating of a first cylinder (5) of the combustion engine (3) in the cylinder bore (2) of a second cylinder (7) to cover a cylinder wall (6) of the second cylinder (7). In this arrangement the masking body (4) is designed in such a way that a flow gap (10) of predeterminable breadth can be set between the masking body (4) and the cylinder wall (6) of the second cylinder (7) for the production of a flow (8) of a fluid (9).
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: August 6, 2013
    Assignee: Sulzer Metco AG
    Inventors: Christian Bohnheio, Gerard Barbezat