Patents Examined by Meenakshi S Sahu
  • Patent number: 10345154
    Abstract: An infrared sensor assembly for sensing infrared radiation comprises infrared sensing elements and the infrared sensing compensation elements that are different so that, for a same flux on the infrared sensing elements and the infrared sensing compensation elements, the radiation responsive element of the infrared sensing elements absorbs more radiation than the radiation responsive element of the infrared sensing compensation elements, as to receive substantially more radiation than the radiation responsive element of the infrared sensing compensation elements. An output of the sensor array is a subtractive function of a sum of the signals of the plurality of infrared sensing elements and a sum of the signals of the plurality of the infrared sensing compensation elements such that at least linear and/or non-linear parasitic thermal fluxes are at least partly compensated for.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: July 9, 2019
    Assignee: MELEXIS TECHNOLOGIES NV
    Inventors: Carl Van Buggenhout, Ben Maes, Karel Vanroye, Stijn Reekmans
  • Patent number: 10345249
    Abstract: An x-ray spectrometer system includes: an excitation source that produces excitation particles and irradiates a sample with the excitation particles such that the sample produces x-rays; thermal detectors that: detect the x-rays from the sample; and produce digital x-ray data in response to detecting the x-rays from the sample, the x-ray data including x-ray pulses; and an analyzer that includes a multichannel receiver that receives, in parallel, the digital x-ray data from the thermal detectors and that: rejects pulse pileup in the digital x-ray data and produces pass data from the digital x-ray data; subjects the pass data to an optimal filter to produce filter data; determines a pulse height of x-ray pulses in the filter data to produce pulse data; combines the pulse data to produce combined data; and calibrates the combined data to produce calibrated data.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 9, 2019
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Terrence J. Jach, Stephen M. Thurgate
  • Patent number: 10338235
    Abstract: The radiation detector according to the present invention is always able to calculate the summation value accurately, regardless of the intensity of the fluorescent emission that is produced in the scintillator. That is, if the method for calculating the summation value set forth in the present invention is used, then the number of instantaneous intensity data d that are added together each time a fluorescent emission is produced in the scintillator will be larger the greater the intensity of the fluorescent emission. Doing this prevents the intensity of an intense fluorescent emission from being understated. Moreover, the summing portion in the present invention is able to calculate the summation value with high reliability. This is because the instantaneous intensity data used in calculating the summation value are above a threshold value a, causing the signal-to-noise ratios to be adequately high and the reliability to be high as well.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: July 2, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Masayuki Nakazawa
  • Patent number: 10324201
    Abstract: An X-ray detector includes an N-channel digital-analogue converter controllable with K+L bits. In an embodiment, the digital-analogue converter includes a first voltage source to provide a plurality of first voltage values at tapping points; and a switch unit with N switch matrices, 2K inputs of the switch matrices being electrically conductively connected to 2K tapping points of the first voltage source. The digital-analogue converter also includes a second voltage source including N subunits. The X-ray detector further includes a discriminator unit including N comparators, at least one input of the comparators being electrically conductively connected to the associated output of the switch matrix and/or to the associated output of the subunit, so that the associated first voltage value and the associated second voltage value are associable with each comparator. A signal of an output of a pre-amplifier, and the associated first and second voltage values are comparable in the comparator.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: June 18, 2019
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Martin Groepl, Edgar Goederer, Thomas Suttorp
  • Patent number: 10310105
    Abstract: A radiation image capturing apparatus includes a plurality of radiation detecting elements; a switch element; a scanning line; a signal line; a bias line; a hardware processor; and a reader which reads image data based on detection of irradiation, the image data based on an amount of charge accumulated in the plurality of radiation detecting elements. The hardware processor samples a signal a plurality of times, the signal based on a current of at least one of the currents flowing in the signal line, the bias line, the scanning line, and the detector line within a predetermined term and the hardware processor obtains a digital signal. The hardware processor calculates the obtained digital signal. The hardware processor determines whether the radiation image capturing apparatus is under a disturbance environment based on a result of calculation.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: June 4, 2019
    Assignee: KONICA MINOLTA, INC.
    Inventor: Ryouhei Kikuchi
  • Patent number: 10310106
    Abstract: A dual/multi-energy x-ray image sensor with stacked two-dimensional pixel arrays. Each pixel in one pixel array has a corresponding “overlaid” pixel in the other pixel array. The pixel arrays are stacked parallel and aligned so that they are nominally normal to the x-ray path, and so that a straight path taken by an x-ray photon from the x-ray source to a pixel in one pixel array will also nominally intersect the corresponding pixel in the other pixel array(s). The energy image sensor provides an x-ray scanning detector system, which has increased signal levels and signal-to-noise ratios over dual- or multi-energy detectors using linear diode arrays, specifically when the pixel arrays are TDI pixel arrays that offer higher sensitivities in high-speed line-scan applications. Signal processing circuitry is placed on a periphery of the pixel arrays and shielded. Dual-to-multiple energy applications can be accomplished by increasing the number of stacked pixel arrays.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: June 4, 2019
    Assignee: X-Scan Imaging Corporation
    Inventors: Shizu Li, Linbo Yang, Nguyen Phuoc Luu, Chinlee Wang, Hsin-Fu Tseng
  • Patent number: 10283545
    Abstract: An image sensor may include an array of imaging pixels and an array of color filter elements that covers the array of imaging pixels. The array of imaging pixels may include visible light pixels that are covered by visible light color filter elements and near-infrared light pixels that are covered by near-infrared light color filter elements. The imaging pixels may be arranged in a pattern having a repeating 2×2 unit cell of pixel groups. Each pixel group may include a visible light pixel sub-group and a near-infrared light pixel sub-group. Signals from each pixel group may be processed to determine a representative value for each pixel group that includes both visible light and near-infrared light information.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: May 7, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marko Mlinar, Tomas Geurts
  • Patent number: 10267748
    Abstract: Methods and systems for training an inspection-related algorithm are provided. One system includes one or more computer subsystems configured for performing an initial training of an inspection-related algorithm with a labeled set of defects thereby generating an initial version of the inspection-related algorithm and applying the initial version of the inspection-related algorithm to an unlabeled set of defects. The computer subsystem(s) are also configured for altering the labeled set of defects based on results of the applying. The computer subsystem(s) may then iteratively re-train the inspection-related algorithm and alter the labeled set of defects until one or more differences between results produced by a most recent version and a previous version of the algorithm meet one or more criteria. When the one or more differences meet the one or more criteria, the most recent version of the inspection-related algorithm is outputted as the trained algorithm.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: April 23, 2019
    Assignee: KLA-Tencor Corp.
    Inventors: Martin Plihal, Erfan Soltanmohammadi, Saravanan Paramasivam, Sairam Ravu, Ankit Jain, Sarath Shekkizhar, Prasanti Uppaluri
  • Patent number: 10267925
    Abstract: Disclosed is a circuit for controlling the temperature and the bias voltage of a detector used by an X-ray analytical instrument. The circuit uses a single common reference voltage for the temperature measurement and for all the ADCs and DACs in the circuit, resulting in reduced drift and improved reproducibility of detector temperature and bias voltage. ADCs with a larger number of bits are used to produce precision values of the temperature, the bias voltage, and their respective setpoints. The setpoints are digitally varied until the precision setpoint values correspond to desired values of temperature and bias setpoints.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: April 23, 2019
    Assignee: OLYMPUS SCIENTIFIC SOLUTIONS AMERICAS INC.
    Inventor: Marc Battyani
  • Patent number: 8389965
    Abstract: For quarantine treatment of a farming and forestry product for pest control, a method and a device may irradiate logs as a phytosanitary treatment with electron beams. The method may include: spreading the logs; aligning the spread logs to be flush at one end; conveying the spread and flush logs laterally; conveying the logs longitudinally through an irradiation field formed by accelerators to provide treatment of irradiation with the electron beams; throwing the irradiated logs out; and laterally conveying the logs away. The device may include a conveying device for conveying the logs, a shielding structure surrounding the conveying device, and accelerators provided in the conveying path of the conveying device. Two or more accelerators may be provided in centrosymmetry about the conveying path.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 5, 2013
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Kejun Kang, Haifeng Hu, Chuanxiang Tang, Yuanjing Li, Qitian Miao, Huayi Zhang, Junli Li, Zhiqiang Chen, Ming Hu, Ming Huang, Yaohong Liu, Wanlong Wu, Hui Zhang, Shenjin Ming
  • Patent number: 8350238
    Abstract: In one embodiment, a method for creating a pattern in a layer of an organic electronic device that includes selectively irradiating a portion of the layer is provided, and devices and sub-assemblies made by the same.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: January 8, 2013
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Shiva Prakash, Nugent Troung
  • Patent number: 8330103
    Abstract: In a multi-charged-particle-beam apparatus, when an electric field and voltage on a surface of a specimen are varied according to characteristics of the specimen, a layout of plural primary beams on the surface of the specimen and a layout of plural secondary beams on each detector vary. Then, calibration is executed to adjust the primary beams on the surface of the specimen to an ideal layout corresponding to the variation of operating conditions including inspecting conditions such as an electric field on the surface and voltage applied to the specimen. The layout of the primary beams on the surface of the specimen is acquired as images displayed on a display of reference marks on the stage. Variance with an ideal state of the reference marks is measured based upon these images and is corrected by the adjustment of a primary electron optics system and others.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 11, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Momoyo Enyama, Hiroya Ohta
  • Patent number: 8324573
    Abstract: In a conventional micro-channel plate (MCP), a secondary electron (SE) detector or a semi-conductor detector the number of the electrons is amplified through its own structure. For such amplification a small voltage difference is applied externally or generated due to its own structure and material. The electric current of electrons undergoing the above-described procedure is amplified by an external amplification circuit. In the present invention electrons—resulting from the collision of the electron beam generated by a microcolumn—are detected by surrounding conductive wiring. The detected electrons are amplified using an amplification circuit on the outside similar to a conventional detection method.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: December 4, 2012
    Inventor: Ho Seob Kim
  • Patent number: 8308198
    Abstract: The present invention relates to a water-based fluorescent ink for the purpose of measurement or judgment of the fluorescence emission in a visible light region by an excitation wavelength in a predetermined ultraviolet range, containing water, a coloring material dissolved or dispersed in water, and an organic solvent, having a plurality of fluorescent groups in the coloring material structure of the coloring material, and using a water-soluble coloring material having a sulfonic acid group as the water-soluble group in the state of a free acid, capable of improving the water resistance and the light resistance, dramatically increasing the content of the fluorescent coloring material in the ink, which has conventionally been included only by a small amount in the ink due to the concentration quenching problem, obtaining preferable fluorescence emission and water resistance of the recorded image, and providing preferable adhesion resistance to the recording medium of the coloring material and reliability.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: November 13, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masako Udagawa, Shoji Koike, Makoto Aoki, Akira Nagashima, Shinichi Hakamada
  • Patent number: 8183543
    Abstract: A multi-beam source for generating a plurality of beamlets of energetic electrically charged particles. The multi-beam source includes an illumination system generating an illuminating beam of charged particles and a beam-forming system being arranged after the illumination system as seen in the direction of the beam, adapted to form a plurality of telecentric or homocentric beamlets out of the illuminating beam. The beam forming system includes a beam-splitter and an electrical zone device, the electrical zone having a composite electrode composed of a plurality of substantially planar partial electrodes, adapted to be applied different electrostatic potentials and thus influencing the beamlets.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 22, 2012
    Assignee: IMS Nanofabrication AG
    Inventor: Elmar Platzgummer
  • Patent number: 8013316
    Abstract: A method and apparatus for near-field focusing of an incident wave, over a range of frequencies from microwaves to optical frequencies, into a sub-wavelength spot having a peak-to-null beamwidth of ?/10. The screen may be made out of closely spaced, unequal slots cut on a metallic sheet. Nano-scale focusing capability may be achieved with a simple structure of three slots on a metallic sheet, which can be readily implemented using current nanofabrication technologies. Unlike negative-refractive-index focusing implementations, this “meta-screen” does not suffer from image degradation when losses are introduced and is easily scalable from microwave to Terahertz frequencies and beyond. The slotted geometry is designed using a theory of shifted beams to determine the necessary weighting factors for each slot element, which are then converted to appropriate slot dimensions.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 6, 2011
    Inventor: George V. Eleftheriades
  • Patent number: 8003962
    Abstract: A nozzle protection device capable of protecting a target nozzle from heat of plasma without disturbing formation of a stable flow of a target material in an LPP type EUV light source apparatus. This nozzle protection device includes a cooling unit which is formed with an opening for passing the target material therethrough, and which is formed with a flow path for circulating a cooling medium inside, and an actuator which changes a position or a shape of the cooling unit between a first state of evacuating the cooling unit from a trajectory of the target material and a second state of blocking heat radiation from the plasma to the nozzle by the cooling unit while securing a path of the target material in the cooling unit.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: August 23, 2011
    Assignee: Gigaphoton Inc.
    Inventors: Hiroshi Someya, Tamotsu Abe, Hideo Hoshino
  • Patent number: 7994473
    Abstract: In a mass spectrometer with an electrostatic ion trap, the electrostatic ion trap has an outer electrode with an ion-repelling electric potential applied to it and a plurality of inner electrodes with ion-attracting potentials applied to each inner electrode. The outer electrode and the inner electrodes are shaped and arranged in such a way that a harmonic electric potential is formed in one spatial direction and, perpendicular to this spatial direction, an electric potential is formed in which ions move in stable, radial trajectories.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: August 9, 2011
    Assignee: Bruker Daltonik GmbH
    Inventor: Claus Köster
  • Patent number: 7985949
    Abstract: Methods and systems are provided for detecting analytes in a gas phase sample. An ion mobility spectrometer is provided for detecting analytes having an excess amount of dopant in its separation region. In an embodiment, the dopant is added directly to the separation region, such as with a drift gas or by diffusion, thereby providing excess dopant that dominates subsequent cluster formation and maintenance. Excess dopant in the separation region minimizes or reduces interfering signals associated with unwanted substances, such as water vapor, that are introduced to the IMS. In an aspect, the invention provides IMS systems and methods having increased sensitivity and reliability for analyte detection.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: July 26, 2011
    Assignee: Particle Measuring Systems, Inc.
    Inventor: Dan Rodier
  • Patent number: 7956322
    Abstract: An MS/MS spectrometric analysis method obtains throughput and mass resolving power of precursor ions. In a mass spectrometer, ions, which are introduced and accumulated in an ion trap unit, are resonance-extracted mass-selectively. A profile of precursor ions at the m/z axis of the ion trap and a profile at the mass analyzer portion, which performs mass analysis of the ions extracted from a collision induced dissociation portion, is obtained by performing a measurement when the injection energy to the collision induced dissociation portion is low, and when the injection energy to the collision induced dissociation portion is high. The profile at the m/z axis of the ion trap of the obtained two-dimensional spectrum is substituted with the profile at the m/z axis of the mass analyzer portion. In this way, the m/z of both the precursor ions and the fragment ions can be determined with high mass resolving power.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: June 7, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masuyuki Sugiyama, Yuichiro Hashimoto, Hideki Hasegawa, Yasuaki Takada