Patents Examined by Melanie Yu Brown
  • Patent number: 10092903
    Abstract: The present invention discloses microfluidic devices with a valve-like structure (3), through which magnetic particles can be transported with minimal transport of fluids. This allows sequential processing of the magnetic particles.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 9, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Menno Willem Jose Prins, Joost Hubert Maas, Albert Hendrik Jan Immink, Dirkjan Bernhard Van Dam, Maatje Koets, Michel J. M. Bruyninckx, Thea Van Der Wijk, Marius Iosif Boamfa, Remco Den Dulk
  • Patent number: 10094824
    Abstract: The present invention concerns a device for measuring the concentration of analytes in liquid samples such as bodily samples. The device comprises an application zone, to which a sample can be applied, and which contains a specific molecule capable of specifically binding the analyte of interest, said specific molecule being conjugated to a reporter which can give rise to variations in impedance. The resulting complex migrates by capillarity and enters a detection zone, on which another molecule capable of specifically binding the analyte of interest is immobilized. The concentration of reporter molecules in the detection zone is proportional with the concentration of analyte in the sample, and variations in concentration of reporter molecules yield a measurable change in electrical properties such as a change in impedance and/or capacitance which can be correlated to the concentration of analyte.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: October 9, 2018
    Assignee: Hasenkam ApS
    Inventors: Jesper Fleischer, Michael Hasenkam, Nils E. Magnusson, Hans Nygaard
  • Patent number: 10082507
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: September 25, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Samuel K. Sia, Vincent Linder, Babak Parviz, Adam Siegel, George M. Whitesides
  • Patent number: 10076755
    Abstract: The invention relates to a recognizable carrier for determining physical, chemical or biochemical interactions by means of optical measurement methods. The carrier comprises a surface that defines a substrate surface and that has a base layer coated with reactive elements, which are bonded to receptor molecules, wherein the base layer and/or the reactive elements are provided with a pattern of holes which forms a code and/or the reactive elements are provided with linker molecules or markers which form a code. The substrate surface may additionally have a macroscopically planar pattern which is applied using laser light or chemical etching and forms a code. The invention likewise relates to a method for producing a recognizable carrier for spectroscopic processes and/or intensiometric tests to determine said interactions. The code to recognize the carrier can be controlled via a read-out unit coupled to the photometric analysis unit.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: September 18, 2018
    Assignee: Biametrics GmbH
    Inventors: Johannes Landgraf, Günther Proll, Florian Pröll
  • Patent number: 10076752
    Abstract: A method of flowing a fluid with a tracer in a microfluidic channel of an assay device and detecting the tracer for determining the channel location or condition of the channel.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: September 18, 2018
    Assignee: CyVek, Inc.
    Inventors: Martin A. Putnam, Jeffrey T. Branciforte, Charles O. Stanwood
  • Patent number: 10078037
    Abstract: Described is a system and method for detecting whether a biological event has occurred in a cellular sample, and then activating a fluidics system to fix the cell at the point in time with the event occurred. In one example, a sample preparation system includes a camera linked to a confocal microscope that is interrogating a cellular sample. Once a detectable event, such as a binding event, has occurred, the sample preparation system releases a fixative to fix the cell at the point in time when the event was detected.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: September 18, 2018
    Assignee: FEI Company
    Inventors: Frank Lison, Jens Greiser, Matthias Langhorst
  • Patent number: 10078079
    Abstract: This invention relates to a device for detecting an analyte in a sample comprising: a radiation source adapted to generate a series of pulses of electromagnetic radiation; a transducer having a pyroelectric or piezoelectric element and electrodes which is capable of transducing energy generated by non-radiative decay into an electrical signal; a detector which is capable of detecting the electrical signal generated by the transducer; a first reagent proximal to the transducer, the first reagent having a binding site which is capable of binding a labelled reagent proportionally to the concentration of the analyte in the sample, which labelled reagent being capable of absorbing the electromagnetic radiation generated by the radiation source to generate energy by non-radiative decay; a second reagent proximal to the transducer, the second reagent having a lower affinity for the labelled reagent under the conditions of the assay than the first reagent; and a third reagent proximal to the transducer, the third rea
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: September 18, 2018
    Assignee: Vivacta Limited
    Inventors: Steve Ross, Julie Richards, Tim Carter
  • Patent number: 10071373
    Abstract: A lateral-flow assay device includes a substrate having a sample addition zone and a wash addition zone downstream thereof along a fluid flow path through which a sample flows. The fluid flow path is configured to receive a wash fluid in the wash addition zone. A hydrophilic surface is arranged in the wash addition zone. Flow constriction(s) are spaced apart from the fluid flow path and arranged to define, with the hydrophilic surface, a reservoir configured to retain the wash fluid by formation of a meniscus between the hydrophilic surface and the flow constriction(s). The fluid flow path draws the wash fluid from the reservoir by capillary pressure. Apparatus for analyzing a fluidic sample and methods of displacing a fluidic sample in a fluid flow path of an assay device are also described.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: September 11, 2018
    Assignee: ORTHO-CLINICAL DIAGNOSTICS, INC.
    Inventors: Zhong Ding, Edward R. Scalice, Daniel P. Salotto
  • Patent number: 10073092
    Abstract: A lateral flow assay device that is defined by multiple loading zones, wherein a sample pad is located before and upstream from a conjugate pad and another sample pad is located after and downstream from the conjugate pad. This configuration allows for increased sensitivity for detecting an analyte in a specimen. The device may employ multiple collection pads or a single collection pad and the collection pads may be engaged with the sample pads in several manners, including but not limited to, pressing down on a cassette with collection pads onto a cassette with the test strips, or by sliding the collection pads along the cassette with the test strips and sample pads.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: September 11, 2018
    Inventor: Andrew Wang
  • Patent number: 10073079
    Abstract: Devices and methods for capture of target particles in a flow. There is a plurality of flow rate-reducing structures in a flow chamber, each structure including a trapping surface shaped to reduce flow rate in a vicinity of the trapping surface. Reduced flow rate in the vicinity of the trapping surface is non-zero and has a magnitude lower than that of flow rate in other regions of the flow chamber. The reduced flow rate is sufficiently low for an attraction force acting on the target particles to overcome drag force on the target particles, to promote capture of particles in the vicinity of the trapping surface. The device may exhibit different sorting zones for capturing particles that experience different amounts and/or types of attraction force. The device may enable sorting of cells according to their level of display of specific protein surface markers.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: September 11, 2018
    Assignee: The Governing Council of the University of Toronto
    Inventors: Shana Olwyn Kelley, Edward Hartley Sargent, Mohamad Reza Mohamadi
  • Patent number: 10067129
    Abstract: Embodiments of the present Invention provide antibody functionalized high electron mobility transistor (HEMT) devices for marine or freshwater pathogen sensing. In one embodiment, the marine pathogen can be Perkinsus marinus. A sensing unit can include a wireless transmitter fabricated on the HEMT. The sensing unit allows testing in areas without direct access to electrical outlets and can send the testing results to a central location using the wireless transmitter. According to embodiments, results of testing can be achieved within seconds.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: September 4, 2018
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Barbara Jane Sheppard, Yu-Lin Wang, Fan Ren, Stephen John Pearton
  • Patent number: 10060916
    Abstract: An electrical biosensor for use with a reader is provided and can include an electrical component configured such that the coupling of a targeted substance to a surface of the electrical component changes an electrical characteristic of the electrical component. A protein immobilization structure can be disposed on the surface and can include an array of functionalized structures for interacting with a substance in a sample of a bodily fluid. Each functionalized structure can include a protein capable of binding to a targeted chemical substance or substance in the sample whereby an electrical reading can be obtained by a reader to determine the concentration level of the targeted substance in the sample.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: August 28, 2018
    Assignee: Avails Medical, Inc.
    Inventor: Oren S. Knopfmacher
  • Patent number: 10058867
    Abstract: In one embodiment, the invention is to a sample metering device, comprising a sample holding chamber oriented between a sample entry port and a sample extraction unit, wherein a portion of said extraction unit defines a metered volume of a sample. A diluent may be transported over and/or through the extraction unit to form a diluted sample for sample analysis. In another embodiment, the invention is to an apparatus and method for rapid determination of analytes in liquid samples by various assays including immunoassays incorporating a sample dilution feature, capable of being used in the point-of-care diagnostic field is provided. The devices and methods of the invention preferably are well-suited for high range sample dilution.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 28, 2018
    Assignee: Abbott Point of Care Inc.
    Inventor: Cary James Miller
  • Patent number: 10054563
    Abstract: In some embodiments, an electrical circuit element, defined as “optoelectronic pixel”, comprises at least one silicon nanowire decorated with optoelectronically active particles and open for contact with a medium for sensing; a metal electrode open for contact with said medium and used for feeding a high-frequency sinusoidal stimulation in impedance measurements and for sensing properties of said medium; implanted source and drain electrodes connected to said silicon nanowire and leaving the gate area and parts of said electrode open for contact with said medium; electrical metal contacts for connecting said pixel to an electrical circuit; and a reference electrode open for contact with said medium for creating a three-electrode-cell system and providing a constant gate potential in the circuit. In addition, some embodiments provide an optoelectronic sensor and wearable-patch sensor based on the array of the optoelectronic pixels, and the readout methods for these sensors.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 21, 2018
    Assignee: RGE SMART PTE. LTD.
    Inventors: Ayal Ram, Amir Lichtenstein, Xuan-Thang Vu, Jessica Ka-Yan Law, Duy Phu Tran, Jannick Wilhelm, Thanh Chien Nguyen, Miriam Schwartz
  • Patent number: 10052630
    Abstract: A microfluidic device comprising one, two or more microchannel structures (101a-h), each of which comprises a reaction microcavity (104a-h) intended for retaining a solid phase material in the form of a wet porous bed. Each of said one, two or more microchannel structures comprises the solid phase material in a dry state together with a bed-preserving agent comprising one or more compounds having bed-preserving activity.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: August 21, 2018
    Assignee: GYROS PATENT AB
    Inventors: Mats Inganas, Susanna Lindman, Helene Derand
  • Patent number: 10048258
    Abstract: The present invention provides apparatus and methods for the rapid determination of analytes in liquid samples by immunoassays incorporating magnetic capture of beads on a sensor capable of being used in the point-of-care diagnostic field.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 14, 2018
    Assignee: Abbott Point of Care Inc.
    Inventors: Cary James Miller, John Lewis Emerson Campbell
  • Patent number: 10042088
    Abstract: The present invention relates generally to optical materials and applications of optical materials and, more particularly, to optical materials incorporating particles such as nanoparticles, methods of forming such materials, and applications of such materials in various devices, for example, for filters, displays, coatings for glare reduction, and the like. The present invention can provide control over fabrication dimensions at very small scale, for example, at the molecular scale rather than at a macroscopic scale. The invention also involves, in some cases, controlling the interaction of many wavelengths of electromagnetic radiation with these materials. The optical materials and devices of the invention may be constructed and arranged for a response to, control of, and/or interaction with essentially any electromagnetic radiation, electric field, and/or magnetic field.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: August 7, 2018
    Assignee: Minerva Biotechnologies Corporation
    Inventor: Cynthia C. Bamdad
  • Patent number: 10041940
    Abstract: A method for providing an integrated circuit such that first and second sensing electrodes respectively have at their surfaces first and second receptor molecules for selectively binding to first and second analytes of interest; exposing the integrated circuit to a sample potentially comprising at least one of the first and second analytes, providing a first bead having a first electrical signature attached to a first molecule having a conformation/affinity for binding to the first sensing electrode dependent on the presence of the first analyte; providing a second bead having a second electrical signature attached to a second molecule having a conformation/affinity for binding to the second sensing electrode dependent on the presence of the second analyte; and determining the presence of the electrical signature of the first and/or second bead(s) on the first and second sensing electrodes respectively. An IC for implementing this method.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: August 7, 2018
    Assignee: NXP B.V.
    Inventors: Filip Frederix, Friso Jacobus Jedema, David Van Steenwinckel, Hilco Suy
  • Patent number: 10031132
    Abstract: The invention relates to a method and a device for the detection of magnetic particles (1) in a sample chamber (112). After introduction of the sample into said sample chamber (112), the magnetic particles (1) are first retained within the sample chamber (112) and kept away from the sensing surface (111) by an appropriate magnetic field (B) to allow for an incubation of the sample with reagents. A reference measurement may be made during this incubation period (TI), preferably at the end thereof. After incubation, the magnetic particles (1) are allowed to contact the sensing surface (111) where a target measurement can be conducted.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: July 24, 2018
    Assignee: Minicare B.V.
    Inventors: Sytske Foppen, Bernardus Jozef Maria Beerling, Willemina Maria Huijnen-Keur, Hendrik Jan De Graaf, Danielle Walthera Maria Kemper-Van De Wiel, Roland Antonius Johannes Gerardus Smits, Albert Hendrik Jan Immink, Femke Karina De Theije, Wendela Meertens
  • Patent number: 10024794
    Abstract: Nickel, iron and palladium thin films thermally evaporated onto glass supports are used to demonstrate surface plasmon coupled fluorescence (SPCF) and surface plasmon couple chemiluminescence (SPCC) over a broad wavelength range (400-800 nm) for potential assays or other detection systems. Nickel, iron and palladium thin films used in SPCF and SPCC convert otherwise isotropic emission into highly directional and polarized emission, an attractive concept for surface assays. The emission angles of detected emissions occur over a 10 degree range for tested emitted wavelengths.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 17, 2018
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY
    Inventor: Chris D. Geddes