Patents Examined by Melvyn Andrews
  • Patent number: 6818042
    Abstract: A slurry of particulate ore material is concentrated to form a smeltable concentrate on a re-concentrator table arranged to separate concentrate ore at a concentrate discharge from middlings and tailings. The table is set such that the concentrate forms a smeltable concentrate and thus at least the middlings contain significant quantities of the concentrate to be collected. The ore to be concentrated is fed to a feeding system including a bin in batch form and carried from the bin by a screw through a screen to the table. The table is operated in processing of the batch for a first period of time during which both the middlings and tailings are returned to the feeding system for recirculation to the table. The period of time is such that the material is circulated over the table repeatedly to separate out the concentrate.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: November 16, 2004
    Assignee: Knelson Patents Inc.
    Inventors: Kevin Gordon Peacocke, Lloyd Arthur Skinner
  • Patent number: 6818175
    Abstract: The invention relates to a device for producing steel. The invention device comprises a container (1, 101, 201). The metal used is molten, blown and refined in said container which comprises an upper component (5, 205) having at least one opening, a lower component (2, 202) and means for tapping the melt and slag from the container. Electrodes (21) can be charged into the container through said opening. The aim of the invention is to improve said device in such a way that said device can be constructed in a more simple manner in comparison with known devices. A bottom tapping system is provided for tapping the melt and optionally the slag.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: November 16, 2004
    Assignee: SMS Demag AG
    Inventor: Klaus-Jürgen Kühne
  • Patent number: 6814779
    Abstract: A process for metal purification comprising a first step for heating a feed metal in a feed crucible to generate a vapor of the metal, a second step for directing the vapor into a condensation passageway for vapors, where part of the vapor is condensed to generate a molten condensate, a third step for directing the vapor through the condensation passageway for vapors into a solidification crucible so that the vapor is cooled to solidify said metal in a high-purity form, and a fourth step for returning the molten condensate into the feed crucible.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: November 9, 2004
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kishio Tayama, Shunichi Kimura
  • Patent number: 6811742
    Abstract: A sampler for melts, in particular for slag, includes a body having an inlet and a sample chamber with an inlet opening. The inlet opening is located in a chamber wall delimited by a first metal plate with an opening. Removal of a sample from the sample chamber is simplified by arranging a second metal plate flat against the first metal plate, with the second metal plate having an opening that, together with the opening of the first metal plate, forms the inlet opening.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: November 2, 2004
    Assignee: Heraeus Electro-Nite International N.V.
    Inventor: Johan Knevels
  • Patent number: 6808550
    Abstract: A system for determining process parameters for the ladle refinement of steel includes a computer executing a number of software algorithms for determining one or more process parameters for various steel refinement process steps. In one embodiment, for example, the computer is configured to determine the total amount of flux additions to achieve a desired sulfur percentage as part of a steel desulfurization process. In another embodiment, the computer is configured to determine the total quantity of oxygen to be injected into the steel as part of a steel reoxidation process. In still another embodiment, the computer is configured to determine a melting temperature of inclusions within the refined steel, and to determine whether this melting temperature is within an acceptable range to successfully process the steel in a continuous steel strip casting apparatus/process, or whether the steel must be reworked to achieve an acceptable inclusion melting temperature.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: October 26, 2004
    Assignee: Nucor Corporation
    Inventors: Rama Mahapatra, Walter Blejde, Joel Sommer, Scott Story, Dave Sosinsky
  • Patent number: 6805723
    Abstract: A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: October 19, 2004
    Assignees: Alcoa Inc., Elkem ASA
    Inventors: Jan Arthur Aune, Kai Johansen
  • Patent number: 6805724
    Abstract: A method and an apparatus for advantageously introducing a flame, a high velocity oxidizing gas, and a high velocity particulate flow into a furnace for metal melting, refining and processing, for example, steel making in an electric arc furnace. The steel making process of an electric arc furnace is made more efficient by shortening the time of the scrap melting phase, introducing a more effective high velocity oxidizing gas stream into the process sooner to decarburize the melted metal and introducing a more effective particulate injection to reduce FeO, form or foam slag and/or recarburize. Improved efficiency is obtained by mounting a fixed burner/lance and carbon injector lower and closer to the hot face of the furnace refractory at an effective injection angle.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: October 19, 2004
    Assignee: Process Technology International, Inc.
    Inventor: Valery G. Shver
  • Patent number: 6802886
    Abstract: The invention is a method of making metallized iron agglomerates by combining iron/steel particles and a reductant material with a cellulose fiber binder material, compacting the combination to form a solid agglomerate, and reducing the iron portions of the agglomerate in a direct reduction furnace. The cellulose fiber binder material provides an agglomerate having improved strength and lower overall cost than comparable agglomerates using binders known in the art.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: October 12, 2004
    Assignee: Midrex Technologies, Inc.
    Inventors: Glenn E. Hoffman, James M. McClelland, Jr.
  • Patent number: 6802888
    Abstract: According to the process, a heap preferably having dimensions of at least 2.5 m high and 5 m wide is constructed with hypogenic copper sulfide bearing ore. The constructed heap includes exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles in the heap is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. Furthermore, at least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is then heated to a temperature of at least 50° C. The heap is inoculated with a culture including at least one strain of thermophilic microorganisms capable of bioleaching sulfide minerals at a temperature above 50° C. A process leach solution that includes sulfuric acid and ferric iron is applied to the heap.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: October 12, 2004
    Assignee: GeoBiotics, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Patent number: 6803016
    Abstract: In a device for atomizing and granulating liquid oxidic slags such as, e.g., converter slags, blast furnace slags or waste incineration slags, including a slag tundish having an outlet opening into which a height-adjustable lance for a propellant jet opens and to which a cooling chamber is connected, the outlet opening is surrounded by an immersion tube arranged concentrically therewith while forming an annular gap. A guide body capable of being adjusted in the axial direction of the lance is arranged in the region of the nozzle mouth of the propellant jet lance, which guide body deflects the propellant jet in the radial direction.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: October 12, 2004
    Assignee: Tribovent Verfahrensentwicklung GmbH
    Inventor: Alfred Edlinger
  • Patent number: 6800112
    Abstract: Both ends of a bulb of a waste fluorescent lamp are cut off, a phosphor layer formed on an interior surface of the bulb is detached, so that mercury-containing phosphor powder can be obtained. The mercury-containing phosphor powder is subjected to a heating and reducing process with the dry-method, by mixing an organic reducing agent with the phosphor powder and heating the mixture, to vaporize and separate mercury from the phosphor powder. The vaporized mercury is then cooled and condensed, to collect mercury.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: October 5, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kenji Fujiwara, Kiyokatsu Fujinami
  • Patent number: 6800113
    Abstract: The present invention refers to an equipment for feeding and distributing charge and fuel in furnaces of rectangular cross section, comprising movable feeding tubes to distribute along the longitudinal section and the cross section of the furnace, both a charge comprised of self-reducing agglomerates, ore, scrap or any other metallic material, and solid fuels of any kind.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: October 5, 2004
    Assignee: Startec Iron LLC
    Inventors: Marcos de Albuquerque Contrucci, Pedro Henrique Carpinetti Costa
  • Patent number: 6800110
    Abstract: A system for producing significant quantities of noble metals from low-grade ore. A mixture of particulate feed containing small amounts of noble metals, a base metal, and activated carbon are placed in a non-conducting container. The container is surrounded by a coiled transmission line and heated via a combustion chamber. Pairs of electrical pulses having equal amplitudes and opposing directions are applied to each end of the transmission line so that the opposing pulses collide within the transmission line, the collision points traveling in a sweeping motion along the transmission line. Other pairs of pulses are sent in repeated cycles of multi-chord pulse trains, each chord having a specific frequency ranging preferably between 5000 to 7000 cycles per second.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: October 5, 2004
    Inventor: Stuart Biddulph
  • Patent number: 6800111
    Abstract: A method for recovering catalytic metals from compositions containing catalytic metal colloids. Compositions such as rinse solutions or dragout baths containing catalytic metal colloids are passed through a filter that entraps catalytic metal colloids from the solutions. The catalytic metal colloid has a high affinity for the filter in contrast to other components of the solutions. The other components of the solution pass through the filter concentrating the catalytic colloid on the filter. The filter containing the catalytic metal colloid is rinsed with an acid solution to remove the catalytic metal from the filter. The catalytic metal is collected in a suitable container or on an adsorbent such as a resin. The method is economically efficient and environmentally friendly.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: October 5, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Jeffrey Doubrava, Eric C. Lundquist, James C. Bohling
  • Patent number: 6797033
    Abstract: A method for recovering catalytic metals from fluids containing catalytic metal colloids. Fluid compositions such as rinse solutions or dragout baths containing catalytic metal colloids are passed through a filter that entraps catalytic metal colloids on the filter. The catalytic metal colloids have a high affinity for the filter in contrast to other components of the fluids. The other components of the fluids pass through the filter while the catalytic colloids concentrate on the filter. The filter containing the catalytic metal colloids is burned, and the catalytic metal is retrieved. The method is economically efficient and environmentally friendly.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: September 28, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Jeffrey Doubrava, Anthony Gallegos, Eric G. Lundquist, James C. Bohling, Richard F. Staniunas, Chad Serell
  • Patent number: 6797034
    Abstract: A method of producing reduced metals is disclosed in which a mixture of a metal oxide and a reducing agent is heated by a burner such that the metal oxide is reduced to a reduced metal. Dry-distilled gas generated during carbonization of an organic matter-containing component is used as fuel for the burner. The sensible heat of exhaust gas evolved by the burner is utilized as heat for carbonizing the organic matter-containing component. Carbide derived by carbonizing the organic matter-containing component is used as the above reducing agent. This method yields excellent cost performance. An apparatus for reducing metal oxides is also disclosed.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: September 28, 2004
    Assignee: Kabushiki Kaisha Seiko Sho
    Inventors: Hiroshi Sugitatsu, Hidetoshi Tanaka, Takao Harada
  • Patent number: 6793707
    Abstract: A method for inoculating molten iron. The method comprises passing the molten iron through a filter assembly at an approach velocity of about 1 to about 60 cm/sec. The filter assembly comprises a filter element and an inoculation pellet in contact with the filter element. The pellet has an inoculant dissolution rate of at least 1 mg/sec. to no more than 320 mg/sec. and comprises about 40-99.9%, by weight, carrier comprising ferrosilicon. The pellet further comprises about 0.1-60%, by weight, at least one inoculating agent selected from a group consisting of cerium, strontium, zirconium, calcium, manganese, barium, bismuth, magnesium, titanium and aluminum or from rare earths.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: September 21, 2004
    Assignees: Pechiney Electrometallurgie, Porvair PLC
    Inventors: Donald B. Craig, Leonard S. Aubrey, Thomas J. Margaria
  • Patent number: 6793708
    Abstract: A slag composition containing from about 85 to about 99 weight percent of steelmaking slag and from about 1 to about 15 weight percent of a foaming additive. The steelmaking slag is at a temperature of from about 2500 to about 3100 degrees Fahrenheit. The foaming additive contains from about 20 to about 80 weight percent of a source of elemental carbon, from about 5 to about 80 weight percent of calcium carbide, and from about 25 to about 75 weight percent of anoxide compound. The weight ratio of the source of elemental carbon to the calcium carbide is at least 2.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: September 21, 2004
    Inventors: Jeremy A. T. Jones, William J. West, Frank L. Kemeny
  • Patent number: 6793709
    Abstract: A process for recycling an electronic scrap material comprising a metal provided on a polymeric substrate, which method comprises: milling flaked electronic scrap material with a bead impact material in the presence of water to produce flakes of cleaned polymeric substrate; adding water to the milled material and separating the flakes of cleaned polymeric substrate from metal-containing material; dewatering and drying the flakes of cleaned polymeric substrate; and treating the metal-containing material to recover the metal.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: September 21, 2004
    Assignee: METSS.org, LLC
    Inventors: John S Hall, Michael Scott McRae-Williams, Kenneth James Heater, Robert Mark Hodge
  • Patent number: 6793710
    Abstract: A method for blowing oxygen in a converter uses a top-blown lance having a Laval nozzle installed on its tip. The Laval nozzle has a back pressure of the nozzle Po(kPa) satisfying a formula, Po=FhS/(0.00465·Dt2), with respect to a oxygen-flow-rate FhS(Nm3/hr) per hole of the Laval nozzle determined from the oxygen-flow-rate FS(Nm3/hr) in a high carbon region in a peak of decarburization and a throat diameter Dt(mm). An exit diameter De of the Laval nozzle satisfies the following formula with respect to the back pressure of the nozzle Po(kPa), an ambient pressure Pe(kPa), and the throat diameter Dt(mm): De2≦0.23×Dt2/{(Pe/Po)5/7×[1−(Pe/Po)2/7]1/2}.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: September 21, 2004
    Assignee: NKK Corporation
    Inventors: Ikuhiro Sumi, Yoshiteru Kikuchi, Ryo Kawabata, Atsushi Watanabe, Shinichi Akai, Satoshi Kohira