Patents Examined by Meredith Weare
  • Patent number: 10932709
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 2, 2021
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 10912489
    Abstract: A respiratory event determination system can have a controller that determines the presence of a respiratory event. The respiratory event can be a mouth puff event. The controller determines the presence as a function of a sub-window of an expiratory window of the breath. The expiratory window extends between a first time ti and a second time t2. The sub-window is limited to a portion of the expiratory window. The sub-window can extend between a third time t3 and a fourth time I4. The fourth time U can be before the second time t2.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 9, 2021
    Assignee: FISHER & PAYKEL HEALTHCARE LIMITED
    Inventor: Amol Man Malla
  • Patent number: 10905364
    Abstract: Methods, computers, and systems used to improve accuracy of analyte level measurement of an in vivo positioned analyte sensor are disclosed herein. The methods, computers, and systems disclosed herein may be used to provide a calibrated analyte level. Specific embodiments relate to methods, computers, and systems for improving accuracy of glucose measurement of an in vivo positioned glucose sensor.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: February 2, 2021
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Udo Hoss, Erwin S. Budiman
  • Patent number: 10898130
    Abstract: A method of detecting pain in a subject, comprises the steps of generating brain wave data based on brain wave activity of the subject and comparing the brain wave data to reference data to generate result data, the reference data corresponding to at least one of (i) population normative data indicative of brain wave activity of a first plurality of individuals in an absence of pain, (ii) population reference data indicative of brain wave activity of a second plurality of individuals generated in response to pain events inflicted on the second plurality of individuals, (iii) subjective population reference data indicative of brain wave activity of a third plurality of individuals reporting a sensation of pain, and (iv) population of reference data indicative of brain wave activity of a fourth population of individuals following an intervention which has changed a subjective report of pain in combination with determining a presence of pain experienced by the subject as a function of the result data.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: January 26, 2021
    Assignee: New York University
    Inventors: Erwin Roy John, Leslie S. Prichep, Emile Hiesiger
  • Patent number: 10898108
    Abstract: The invention relates to a device for collecting aerosol particles in an exhaled air flow. Said particles may be aerosol particles such as biomarkers or particles related to drugs or other substances formed or found in the alveoli of the lungs. Said device comprises a housing having an extension direction between a first end with an inlet arranged to receive an exhaled air flow and a second end with an outlet arranged to transmit the exhaled air flow and an inner cross section defined by inner walls of the housing and at least four first type partition walls, arranged in a direction essentially perpendicular to the walls, partly covering the inner cross section of the housing.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: January 26, 2021
    Assignee: MUNKPLAST AB
    Inventor: Peter Stambeck
  • Patent number: 10898091
    Abstract: Systems, methods, and apparatus for esophageal panometry are provided. An example method includes capturing measurement data including an area and a pressure of an esophageal body via a measurement device positioned with respect to the esophageal body; generating representations of the exported measurement data; analyzing the measurement data to determine esophageal reactivity based on the area and pressure; assessing esophageal function based on the determined esophageal reactivity; and outputting an indication of esophageal function.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: January 26, 2021
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: John Erik Pandolfino, Zhiyue Lin, Peter J. Kahrilas, John O'Dea, Adrian McHugh
  • Patent number: 10881306
    Abstract: A method is disclosed for continuously monitoring a blood pressure measurement using a sensor connected by a hydraulic link to an arterial catheter, the method includes determining the dynamic parameters of the link, analyzing the frequency content of the incident signal, detecting one of the following situations: (a) ability of the link to transmit the incident signal with a distortion below a threshold, (b) ability of the link to transmit the incident signal with a distortion above the threshold and possibility of correcting the measured signal, (c) inability of the link to transmit the incident signal with a distortion below the threshold and impossibility of correcting the measured signal, periodic application of a mechanical action to the tubing providing the hydraulic link.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 5, 2021
    Assignees: Universite Joseph Fourier—Grenoble 1, Automatisme et Informatique Industrielle
    Inventors: Francis Grimbert, Yves Lavault
  • Patent number: 10856753
    Abstract: A system, method and non-transitory computer readable storage medium for monitoring a perfusion of a patient. The system, method and computer readable storage medium receive an indication of a voltage applied across a chest of the patient via a first electrode, receive a measurement of a current across the chest of the patient, resulting from the applied voltage via a second electrode, generate an impedance-based respiratory rate waveform based on the applied voltage and the measured current, generate a Fourier Transform of the respiratory rate waveform relative to a heartbeat of the patient, isolate cardiac artifacts in the Fourier Transform and generate a perfusion waveform indicating a perfusion of a chest cavity of the patient based on the isolated cardiac artifacts.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: December 8, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Abigail Acton Flower
  • Patent number: 10856778
    Abstract: It is disclosed an articulation rigidity assessment device for assessing the rigidity of the articulation when a bending motion is imposed to a limb of said articulation around a predetermined rotation axis of the articulation, said device comprising: a one-axis angular velocity sensor for attaching to said limb such that the axis of measurement is parallel to the axis of rotation of the imposed bending motion; a data processor configured to process the signal of the angular velocity sensor and to distinguish between non-rigid and rigid states of the articulation using the processed angular velocity signal. The articulation may be the wrist articulation of the patient and the limb is the respective hand. The device may comprise a skin-contacting patch for applying to the limb of the patient wherein the one-axis angular velocity sensor is attached to said skin-contacting patch. The skin-contacting patch may be applied to the palm or back of the hand.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: December 8, 2020
    Assignee: INESC TEC—INSTITUTO DE ENGENHARIA DE SISTEMAS E
    Inventors: João Paulo Trigueiros Da Silva Cunha, Pedro Costa
  • Patent number: 10835137
    Abstract: A sensor arrangement including at least two displaced first sensors arranged in parallel in a first plane and adapted to measure a quantity of a fluid flow and a control unit adapted to determine, from the measured quantity of the fluid flow, information indicating at least a range of directions of the fluid flow in two dimensions.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: November 17, 2020
    Assignee: MEDYRIA AG
    Inventors: Mauro Massimo Sette, Anita Di Iasio
  • Patent number: 10827969
    Abstract: There is provided a method of evaluating a liver condition of a subject, the method includes computing a fluctuation parameter from a liver breath test based on at least one of a percentage dose recovery (PDR) curve and a delta over baseline (DOB) curve of an isotope labeled methacetin, or a salt or a derivative thereof, and evaluating at least one liver condition of the subject, based at least on the fluctuation parameter. There is provided herein a method of evaluating a liver condition of a subject, the method includes computing a hepatic impairment score based at least on a breath test related parameter and on a demographic parameter.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: November 10, 2020
    Assignee: EXALENZ BIOSCIENCE LTD.
    Inventors: Ilan Ben-Oren, Gil Guggenheim, Avraham Hershkowitz, Yaron Ilan
  • Patent number: 10827932
    Abstract: Systems and methods for detecting cardiac conditions such as events indicative of worsening heart failure are described. A system can include a sensor circuit to sense a physiological signal, transform one or more first signal portions of the physiological signal into one or more baseline values, and transform one or more second signal portions of the physiological signal into short-term values associated with respective timing information. The system can generate a cardiac condition indicator using a weighted combination of relative difference between the one or more short-term values and the one or more baseline values. The weighting can include one or more weight factors determined according to the timings of the one or more second signal portions. The system can output an indication of a progression over time of the cardiac condition indicator, or deliver therapy according to the cardiac condition indicator.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 10, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Qi An, Yi Zhang
  • Patent number: 10820813
    Abstract: Embodiments of the present disclosure are configured to assess the severity of a blockage in a vessel and, in particular, a stenosis in a blood vessel. In some particular embodiments, the devices, systems, and methods of the present disclosure are configured to collect and wirelessly distribute reliable pressure signals to other devices, and do so in a small, compact device that integrates with existing proximal and distal pressure measurement systems and does not require a separate power source.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 3, 2020
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventor: Howard David Alpert
  • Patent number: 10806351
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: October 20, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, Robert Hunt
  • Patent number: 10799149
    Abstract: This document relates to computer-based systems and techniques for analyzing skin coloration using spectral imaging techniques to determine a medical condition of an individual. This document further relates to providing feedback to a rescuer or other medical professional based on the colorimetric properties of the patient's skin.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: October 13, 2020
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Ulrich Herken
  • Patent number: 10791941
    Abstract: A venous pressure measurement apparatus includes a pressure controller configured to change a pressure applied from a cuff to a portion of a body where a vein and an artery exist and to which the cuff is attached, a pulse wave detector configured to detect pulse waves from a pressure the cuff receives from the portion of the body, and a venous pressure calculating section configured to calculate a venous pressure based on the applied pressure and the pulse waves detected by the pulse wave detector during a period in which the applied pressure is changed. The pressure controller is configured to execute a plurality of measurement steps, the applied pressure being increased or reduced from an initial value in each of the measurement steps.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: October 6, 2020
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Teiji Ukawa, Haruka Morimoto
  • Patent number: 10786164
    Abstract: Systems and methods are provided for determining the frequency of a cardiovascular pulse based on a first physiological signal that is continuously available and a second physiological signal that is less available and that is more accurate or otherwise improved relative to the first signal with respect to pulse rate estimation. When the second signal is available it controls the determination of the pulse rate. When the second signal is unavailable, the first signal is used to determine the pulse rate. This can include using the first signal to estimate the pulse rate until the second signal is available, at which point the pulse rate is estimated based on the second physiological signal. Alternatively, the first signal could be used to determine a number of candidate pulse rates, and the second signal could be used to select a pulse rate from the set of candidate pulse rates.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: September 29, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Mark Murphy, Russell Norman Mirov, Christopher Towles Lengerich
  • Patent number: 10772513
    Abstract: A blood pressure ratio calculation device is a device for calculating a maximum-minimum blood pressure ratio corresponding to a ratio between a maximum blood pressure value and a minimum blood pressure value of an inspection target, and includes an input unit for inputting a relative blood pressure waveform corresponding to temporal change in relative blood pressure of the inspection target, a spectrum generation unit for generating a relative blood pressure waveform spectrum by performing Fourier transform on the relative blood pressure waveform, and an analysis unit for calculating the maximum-minimum blood pressure ratio on the basis of the relative blood pressure waveform spectrum.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: September 15, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoya Nakazawa, Rui Sekine
  • Patent number: 10772516
    Abstract: A heart rate monitor (40) for detecting a pulse of a person (10) employs a platform (43), a plurality of multi-axis accelerometers (41R, 41L) and a pulse detector (44). The multi-axis accelerometers (41R, 41L) are adjoined to the platform (43) to generate differential mode signals (AZR, AZL) indicative of a sensing by the accelerometers (41) of physiological motion (12) of the person (10) relative to acceleration sensing axes (42R, 42L) and to generate common mode signals (AXR, AXL, AYR, AYL) indicative of a sensing by the accelerometers (41R, 41L) of extraneous motion by the person (10) relative to the acceleration sensing axes (42R, 42L). The pulse detector (44) is operably connected to the multi-axis accelerometers (41R, 41L) to generate a pulse signal (PS)as a function of a vertical alignment of the acceleration sensing axes (42R, 42L) combining the differential mode signals (AZR, AZL) and cancelling the common mode signals (AXR, AXL, AYR, AYL).
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: September 15, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: James Knox Russell, Haris Duric, Chenguang Liu
  • Patent number: 10772565
    Abstract: The delivery system may include, for example, an outer catheter having a distal tip and an inner support member, such as an inner catheter, disposed within the outer catheter. The inner support member includes an anchor member adjacent a distal tip of the inner support member and a support portion axially inward of the anchor member. The support portion is configured for supporting an implantable device thereon. A diameter of the anchor member corresponds to a diameter of a portion of a vessel in which the anchor member is to be disposed. The anchor member is configured to be lodged in the portion of the vessel to locate an intended position of the anchor member and to prevent movement of the inner support member relative to the vessel during release of the implantable device.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: September 15, 2020
    Assignee: Ohio State Innovation Foundation
    Inventor: Rami Kahwash