Patents Examined by Michael D'Angelo
  • Patent number: 8515519
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: August 20, 2013
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, James Patrick Thrower, Daniel S. Kline, Daniel Shawn Codd, Sean Saint, Steve Masterson
  • Patent number: 8515517
    Abstract: Methods and apparatuses including determining a calibration parameter associated with a detected analyte value, calibrating the analyte value based on the calibration parameter, and dynamically updating the calibration parameter are disclosed. Also provided are systems, kits, and computer program products.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 20, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Hayter, Erwin S. Budiman, Kenneth J. Doniger, John C. Mazza
  • Patent number: 8509871
    Abstract: The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 13, 2013
    Assignee: DexCom, Inc.
    Inventors: Rathbun K. Rhodes, Mark A. Tapsak, James H. Brauker, Mark C. Shults
  • Patent number: 8491494
    Abstract: A breath condensate collection apparatus comprising a central chamber, a breath input assembly, a plunger assembly and a breath condensate collection port. The central chamber has inner and outer side walls with a coolant material sealed in between. The breath input assembly is disposed on the side of the central chamber in fluid communication with the chamber interior. The plunger assembly has a piston, slidably disposed in the chamber, and a handle extending from a first end of the chamber. The collection port is disposed at the second end of the central chamber in fluid communication with the interior of the chamber. Obstructive structures may be arranged in the chamber interior for increasing the surface area on which condensate may form. The apparatus may also include an outlet assembly that may be removed and replaced with a sampling well into which the condensate may be washed with a buffer solution.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 23, 2013
    Assignee: The Charlotte-Mecklenburg Hospital Authority
    Inventor: Jeffrey A. Kline
  • Patent number: 8494607
    Abstract: A handheld diabetes management device having a database management system is disclosed. The device comprises a plurality of input modules, including a blood glucose reader, a user interface, a communications interface, and a continuous blood glucose input module. The input modules output data used to generate data records of different record types. The device further comprises N databases, each database having a different frequency range associated thereto, wherein the new record is stored in a particular database of the N databases based on the frequency range of the particular database and the frequency of the particular record type, and N is an integer greater than 1. The device further includes a database operation module that performs database operations on the N databases. The database management system provides increased reliability in the keeping of records on which medically important decisions are made.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: July 23, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Robert P. Sabo, Robert Timmerman, Mark Nierzwick, Robert E. Reinke
  • Patent number: 8483793
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 9, 2013
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Patent number: 8478377
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: July 2, 2013
    Assignee: Dexcom, Inc.
    Inventors: Mohammad Ali Shariati, Ying Li, Apurv Ullas Kamath, Peter C. Simpson, Richard C. Yang, Mark Brister
  • Patent number: 8473022
    Abstract: Methods and devices and systems for determining an analyte value are disclosed.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 25, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Hayter, Kenneth J. Doniger, Erwin S. Budiman
  • Patent number: 8460199
    Abstract: A monitoring device for monitoring the vital signs of a user is disclosed herein. The monitoring device is preferably comprises an article, an optical sensor, an accelerometer and processor. The optical sensor preferably comprises a photodetector and a plurality of light emitting diodes. A sensor signal from the optical sensor is processed with a filtered accelerometer output signal from the accelerometer to create a filtered vital sign signal used to generate a real-time vital sign for a user.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 11, 2013
    Assignee: Impact Sports Technologies, Inc.
    Inventors: Nikolai Rulkov, Mark Hunt, Donald Brady
  • Patent number: 8460202
    Abstract: An apparatus to measure cardiac output (Q) and other parameters such as alveolar ventilation (VA), minute CO2 elimination from the lung (VCO2), minute oxygen consumption (VO2), oxygenated mixed venous partial pressure of CO2, (PvCO2-oxy), true mixed venous partial pressure of CO2(PvCO2), PaCO2, mixed venous oxygen saturation (SvO2), pulmonary shunt, and anatomical dead space, consisting of: a) a breathing circuit with characteristics that: i. on exhalation, exhaled gas is kept substantially separate from inhaled gas; ii.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: June 11, 2013
    Assignee: Thornhill Scientific Inc.
    Inventors: Joseph Fisher, David Preiss, Takafumi Asami, Alex Vesely, Eltan Prisman, Ron Somogyi, Steve Iscoe
  • Patent number: 8463350
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: June 11, 2013
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James Brauker, J. Michael Dobbles
  • Patent number: 8454521
    Abstract: The objective of the present invention is to provide a sphygmomanometer that is easy to use. The sphygmomanometer according to the present invention measures blood pressure in accordance with an oscillation in an artery wall, resulting from an arterial pulse correspondent with a change in cuff pressure. It comprises a cuff that is connected to the sphygmomanometer main body by a tube, a display unit for displaying the results of blood pressure measurements, and an air supply unit for supplying air to, and thus pressurizing, the cuff, which is detachable from the sphygmomanometer main body. The air supply unit is screwed into the sphygmomanometer main body with a screw assembly, and the screwed-in state is preserved by a caulking ring. The air supply unit also comprises a filter for keeping dust from entering the sphygmomanometer main body.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: June 4, 2013
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Hiroshi Mochizuki
  • Patent number: 8452368
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: May 28, 2013
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Daniel Kline, Steve Masterson, Sean Saint
  • Patent number: 8447376
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 21, 2013
    Assignee: Dexcom, Inc.
    Inventors: Mohammad Ali Shariati, Ying Li, Apurv Ullas Kamath, Peter C. Simpson, Richard C. Yang, Mark Brister
  • Patent number: 8442610
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 14, 2013
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James H. Brauker, Apurv U. Kamath
  • Patent number: 8428678
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: April 23, 2013
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, Jr.
  • Patent number: 8428679
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: April 23, 2013
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, Victoria Carr-Brendel
  • Patent number: 8419648
    Abstract: A method of measuring blood pressure and velocity proximally and distally of a stenosis in a vessel carrying blood includes the steps of providing a guide wire having both a pressure sensor and a velocity sensor disposed on a distal region of the guide wire, introducing the guide wire into the vessel, advancing the guide wire to position the pressure sensor and the velocity sensor proximally and distally of the stenosis, and measuring the blood pressure and velocity proximally and distally of the stenosis with the pressure sensor and the velocity sensor.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: April 16, 2013
    Assignee: Volcano Corporation
    Inventors: Paul Corl, Robert Obara, John Ortiz
  • Patent number: 8423113
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 16, 2013
    Assignee: DexCom, Inc.
    Inventors: Mohammad Ali Shariati, Apurv Ullas Kamath, J. Michael Dobbles, Aarthi Mahalingam
  • Patent number: 8423108
    Abstract: A system and method for identifying volume status of a patient are disclosed. A pulse density signal is recorded from the patient. The pulse density signal is filtered to capture a respiration sampling period and a plurality of cardiac cycles occurring during the respiration sampling period. Mean pulse pressure and peak blood flow velocity for the respiration sampling period are calculated and are used as indices of volume status of the patient.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: April 16, 2013
    Assignee: Intelomed, Inc.
    Inventor: Jan Berkow