Patents Examined by Michael D'Angelo
  • Patent number: 8352006
    Abstract: Hypoxia is diagnosed through measurements of oxygen saturation. Some examples of hypoxia conditions that may be diagnosed include peripheral vascular disease, multiple organ dysfunction syndrome, ischemia, hypotension, and arteriosclerosis. In a specific implementation, a hypoxia condition is diagnosed based on changes in oxygen saturation in tissue. Ischemia is induced, and then measurements of changes in oxygen saturation in tissue are made. Based on changes in oxygen saturation, a diagnosis is provided of whether a patient has or does not have a hypoxia condition.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: January 8, 2013
    Assignee: ViOptix, Inc.
    Inventors: Mohamed Elmandjra, William O'Keefe, Jian-min Mao, Robin Bush, Linda Christenson
  • Patent number: 8352023
    Abstract: Described is a method and system which includes a first set of digital data generated by amplifying and digitizing brain waves of a patient before and after administration of initial doses of interventional agents to the patient and a second set of digital data generated by amplifying and digitizing brain waves of the patient during a medical procedure. In addition, the system includes a microprocessor computing separate trajectories for at least two different indices of an anesthetic state of the patient during the medical procedure as a function of a comparison of the first and second sets of digital data, the indices including a Depth Index (DI), a Memory Index (MI) and Pain Index (PI), the DI corresponding to a depth of anesthesia of the patient, the PI corresponding to a sensitivity of the patient to pain and the MI corresponding to an ability of the patient to form and store memories.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 8, 2013
    Assignee: New York University
    Inventors: Erwin R. John, Leslie S. Prichep
  • Patent number: 8352021
    Abstract: A method for providing an indication of a state of awareness for a patient, includes the steps of arranging data of an EEG and EMG power spectrogram to provide power versus frequency in a log-log arrangement; calculating a first best-fit line for a lower frequency region of the EEG power spectrogram; calculating a second best-fit line for a higher frequency region of the EEG power spectrogram; calculating a third best-fit line for the EMG power spectrogram; and displaying an indication of the state of awareness based on the first, second and third best-fit lines.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: January 8, 2013
    Inventor: Christopher Scheib
  • Patent number: 8332008
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 11, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James Brauker, Apurv U. Kamath, Victoria E. Carr-Brendel
  • Patent number: 8323219
    Abstract: Sensors, apparatus, and methods for measuring movements are disclosed. The sensors include input and output windings wound about a common location and an armature is equally positioned relative to both windings movable to vary inductance reactance of the sensor. The mass of the sensor and the ease of movements are such that flexible membranes, such as skin, can be monitored with insignificant interference. The sensor can be included in “Band-aid” bandage arrangement in which the bandage backing can be removed and held in place on skin by the bandage. A monitoring circuit, responsive to the changes in sensor impedance, provides indications of the detected movements. The monitoring circuit includes an arrangement for self-adjusting parameters so that the system can be automatically preset and continually reset. The monitoring circuit includes a power savings arrangement.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: December 4, 2012
    Assignee: Medility LLC
    Inventor: William T. Cochran
  • Patent number: 8308651
    Abstract: A combination toothbrush and peak flow meter system for increasing the compliance of peak flow measurements in children and adults with asthma. The combination toothbrush and peak flow meter system includes a peak flow meter and a toothbrush head connected to an end of the peak flow meter. The peak flow meter transmits the peak flow measurement data to the hospital computer to be evaluated by a physician.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 13, 2012
    Inventor: Dingane Baruti
  • Patent number: 8308642
    Abstract: A spectroscopic diagnostic apparatus is disclosed as an aid for laser tattoo removal. The apparatus performs spectroscopic analysis of the tattooed skin before or during laser treatment, which provides composition information of the tattoo pigments and photometric information of the skin for optimizing laser treatment protocols automatically or manually. It also provides a simulated treatment result for the selected laser types.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: November 13, 2012
    Assignee: BWT Property, Inc.
    Inventors: Xin Jack Zhou, Sean Xiaolu Wang
  • Patent number: 8290560
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James H. Brauker, J. Michael Dobbles
  • Patent number: 8290562
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, Victoria Carr-Brendel
  • Patent number: 8287460
    Abstract: An apparatus and associated method for collecting data for a sleep study. The apparatus includes a sensor adapted to collect data relating to a parameter of a user of the apparatus over a period of time, and a controller operatively coupled to the sensor. The controller is adapted to: (a) receive configuration information specifying a predetermined amount of valid data that is required for a sleep study to be deemed valid, (b) receive the data relating to the parameter and determine an amount of the received data that is valid, and (c) cause a study status indicator to be output by the apparatus based on the amount of the received data that is determined to be valid and the predetermined amount specified in the configuration information.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: October 16, 2012
    Assignee: RIC Investments, LLC
    Inventors: William H. Broadley, Richard J. Lordo, Ronald D Fligge, Daniel Martin, Duane H Carter, Steven J Albright
  • Patent number: 8290559
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Mohammad Ali Shariati, Ying Li, Apurv Ullas Kamath, Aarthi Mahalingam
  • Patent number: 8287453
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Ying Li, Apurv Ullas Kamath, Mark Brister
  • Patent number: 8285354
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: October 9, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James Brauker, Apurv U. Kamath, Victoria E. Carr-Brendel
  • Patent number: 8280476
    Abstract: One aspect of the invention provides a glucose monitor having a plurality of tissue piercing elements, each tissue piercing element having a distal opening, a proximal opening and interior space extending between the distal and proximal openings; a sensing area in fluid communication with the proximal openings of the tissue piercing elements; sensing fluid extending from the sensing area into substantially the entire interior space of the tissue piercing elements; and a glucose sensor adapted to detect a concentration of glucose in the sensing fluid within the sensing area.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 2, 2012
    Assignee: Arkal Medical, Inc.
    Inventor: Arvind N. Jina
  • Patent number: 8277387
    Abstract: In order to provide a technique for determining high-quality blood pressure values of a patient, especially in cases of unsupervised blood pressure measurements in a home environment, it is suggested to use a system (1) for determining the blood pressure of a patient (2) comprising a blood pressure measuring device (3, 4) for measuring a blood pressure value, an auxiliary device (6, 7, 8, 9) for measuring the motor activity of the patient (2) during a defined period of time prior to the blood pressure measurement, and a processing device (13, 14), said processing device (13, 14) being adapted to obtain the motor activity information and the blood pressure value, said processing device (13, 14) being further adapted to automatically assess the blood pressure value using the motor activity information, and said processing device (13, 14) being further adapted to provide a measuring result depending on the result of the assessment.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: October 2, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jens Muehlsteff, Gerd Lanfermann, Xavier Aubert, Olaf Such
  • Patent number: 8275437
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: September 25, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Apurv U. Kamath, Paul V. Goode, Mark Brister
  • Patent number: 8262580
    Abstract: In a method for intermittently occluding the coronary sinus, in which the coronary sinus is occluded using an occlusion device, the fluid pressure in the occluded coronary sinus is continuously measured and stored, the fluid pressure curve is determined as a function of time, and the occlusion of the coronary sinus is triggered and/or released as a function of at least one characteristic value derived from the measured pressure values. The pressure increase and/or pressure decrease per time unit each occurring at a heart beat are used as characteristic values.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: September 11, 2012
    Assignee: Miracor Medical Systems GmbH
    Inventors: Werner Mohl, Loay Alzubaidi
  • Patent number: 8257257
    Abstract: A capsule type medical device is of a type of a capsule type medical device that is introduced inside the living body to gather in-vivo information, and comprises a capsule shaped casing; an in-vivo information acquisition device for acquiring the in-vivo information; a communication device for sending the in-vivo information acquired by the in-vivo information acquisition device to outside of the living body by wireless; at least one pair of first electrodes provided in a vicinity of one end along an axis of the casing for giving electric stimulation to body tissue in the living body; a first current control device for sending current to the first electrodes; and an interelectrode distance variation device for changing a distance between the electrodes.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: September 4, 2012
    Assignee: Olympus Corporation
    Inventors: Hironobu Takizawa, Akio Uchiyama, Hironao Kawano, Takeshi Yokoi, Masatoshi Homan
  • Patent number: 8255029
    Abstract: A physiological measurement system is disclosed which can take a pulse oximetry signal such as a photoplethysmogram from a patient and then analyse the signal to measure physiological parameters including respiration, pulse, oxygen saturation and movement. The system can be used as a general monitor, or more specifically, to for infant or adult apnea, and to guard against sudden infant death syndrome.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: August 28, 2012
    Assignee: Nellcor Puritan Bennett LLC
    Inventors: Paul Stanley Addison, James Nicholas Watson
  • Patent number: 8249684
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: August 21, 2012
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, Jr.