Patents Examined by Michael G Miller
  • Patent number: 9678258
    Abstract: A dichroic coating can be applied to a glass window of an electronic device to enhance the cosmetic and aesthetic appeal of the device. Different processes can be applied to the glass window in combination with a dichroic coating. For example, a layer of ink can be applied to the glass window in addition to one or more layers of dichroic material. The material layers can cover any suitable portion of the glass. For example, the material layers can include holes or openings. As another example, the material layers can be constructed from several distinct shapes placed on the glass. In some cases, software applications can be used to define a desired color profile for a coating, and to retrieve a suitable combination of dichroic and other layers to provide the desired color profile.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 13, 2017
    Assignee: APPLE INC.
    Inventors: Evans Hankey, Ron Moller, Jody Akana, Mike Pilliod, Michael Holmberg, Peter Russell-Clarke
  • Patent number: 9631272
    Abstract: Methods of forming metal carbide films are provided. In some embodiments, a substrate is exposed to alternating pulses of a transition metal species and an aluminum hydrocarbon compound, such as TMA, DMAH, or TEA. The aluminum hydrocarbon compound is selected to achieve the desired properties of the metal carbide film, such as aluminum concentration, resistivity, adhesion and oxidation resistance. In some embodiments, the methods are used to form a metal carbide layer that determines the work function of a control gate in a flash memory.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 25, 2017
    Assignee: ASM AMERICA, INC.
    Inventors: Dong Li, Steven Marcus, Suvi P. Haukka, Wei-Min Li
  • Patent number: 9575214
    Abstract: A method for producing a polarizer comprises the steps of: (A) stretching a polyvinyl alcohol-based resin layer to obtain a stretched layer; (B) immersing the stretched layer in a dyeing liquid containing iodine to obtain a dyed layer in which absorbance thereof determined from a tristimulus value Y is from 0.4 to 1.0 (transmittance T=40% to 10%); and (C) removing a part of iodine adsorbed in the dyed layer so that the absorbance of the dyed layer decreases by 0.03 to 0.7, provided that the absorbance of the dyed layer is controlled so that it does not become less than 0.3.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: February 21, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Hiroaki Sawada, Takeharu Kitagawa, Takashi Kamijo
  • Patent number: 9567555
    Abstract: A coating apparatus and a method of fabricating a liquid crystal display device using the same is described where a uniform coating layer over an entire surface of a substrate is formed by placing auxiliary coating devices at front and rear ends of the coating apparatus and starting the coating operation from the auxiliary coating device. The coating apparatus includes: a table on which an object is located; a slit nozzle installed above the table and dispensing a coating solution on the surface of the object; an auxiliary coating device installed at least one end of the table; and a driving unit moving the slit nozzle in a predetermined direction.
    Type: Grant
    Filed: June 24, 2006
    Date of Patent: February 14, 2017
    Assignee: LG DISPLAY CO., LTD.
    Inventors: O-Jun Kwon, Kang-Il Cho
  • Patent number: 9551063
    Abstract: An evaporation apparatus with high utilization efficiency for EL materials and excellent film uniformity is provided. The invention is an evaporation apparatus having a movable evaporation source and a substrate rotating unit, in which the space between an evaporation source holder and a workpiece (substrate) is narrowed to 30 cm or below, preferably 20 cm, more preferably 5 to 15 cm, to improve the utilization efficiency for EL materials. In evaporation, the evaporation source holder is moved in the X-direction or the Y-direction, and the workpiece (substrate) is rotated for deposition. Therefore, film uniformity is improved.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: January 24, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakazu Murakami, Hisashi Ohtani
  • Patent number: 9545161
    Abstract: The invention relates to an article comprising a substrate and a nano-porous coating, wherein the reflectivity of the article is less then 2%, and whereby the amount of sodium measured in the coating by XPS is less then 1 wt %, and further to a method of making the article.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: January 17, 2017
    Assignee: DSM IP ASSETS B.V.
    Inventors: Jens Christoph Thies, Patrick Wilhelmus Antonius Vrijaldenhoven, Hermanus Adrianus Langermans
  • Patent number: 9534293
    Abstract: The purpose of the invention is a process for obtaining a material comprising a substrate at least part of whose surface and at least one of whose faces is based on organic compounds, the said process being implemented at atmospheric pressure comprises moreover the following stages: In the immediate vicinity of the said substrate a zone containing active species of a non-thermal plasma is created; into the said zone is injected at least one precursor of a chemical element so as to deposit upon at least one face of the said substrate (at least part of whose surface comprises an organic compound base), a first thin layer capable of protecting the said substrate against oxidation reactions, specifically those due to radicals. A further purpose of the invention is the material obtainable according to this process.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: January 3, 2017
    Assignee: CertainTeed Corporation
    Inventors: Sophie Besson, Maxime Duran, Emmanuel Garre, Carole Gentilhomme, Emilie Viasnoff, Corinne Victor, Thierry Gay
  • Patent number: 9493707
    Abstract: A process of preparing a lamination film comprising two or more layers of a fixed cholesteric liquid-crystal phase is disclosed. The process comprises (a) applying a coating liquid of a curable liquid crystal composition comprising a rod-like liquid crystal compound, an alignment-control agent capable of controlling an alignment of the rod-like liquid crystal compound and a solvent to a surface; (b) drying the applied curable liquid crystal composition to form a cholesteric liquid-crystal phase; (c) carrying out a curing reaction of the composition and fixing the cholesteric liquid-crystal phase, thereby to form a lower layer; and (d) repeating the steps (a) to (c) on the lower layer, thereby to form an upper layer; wherein at least a part of the alignment-control agent in the lower layer diffuses into the upper layer.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 15, 2016
    Assignee: FUJIFILM Corporation
    Inventors: Kazuhiro Oki, Wataru Majima, Hidetoshi Watanabe, Mitsuyoshi Ichihashi
  • Patent number: 9481602
    Abstract: The invention relates to a method for treating an optical lens coated onto at least one of the main surfaces thereof with an outer hydrophobic and/or oleophobic coating, and for making it capable of undergoing an edging process, comprising a step of treating the peripheral area of said coated main surface which results in the removal of the hydrophobic and/or oleophobic coating and/or in the modification of said coating that lowers the hydrophobic character thereof, and a step of depositing a temporary polymeric coating onto said main surface of the lens so as to cover at least partially the hydrophobic and/or oleophobic coating and the peripheral area treated during the previous step, in order to provide an optical lens having onto at least one of the main surfaces thereof an outer hydrophobic and/or oleophobic coating and, in direct contact with said hydrophobic and/or oleophobic coating, a temporary polymeric coating adhering to the surface of the coated lens.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: November 1, 2016
    Assignee: Essilor International
    Inventors: Chefik Habassi, Marcel Yaigre
  • Patent number: 9475726
    Abstract: A process for manufacturing a one-way vision glass pane, the process including: a) depositing a layer of a compound comprising a mineral pigment over an area of the pane, the compound being free of glass frit; b) depositing a layer of an enamel compound including a glass frit and a mineral pigment of a different color to the pigment of a), by screen printing, in the shape of the one or more desired patterns; c) heating the coated pane to a temperature high enough to bake the enamel; and d) removing pigments that have not been fixed by the enamel, wherein the particles of the pigments and the particles of the glass frits are of similar size, and the thickness of the layer of the deposited enamel compound is larger than the thickness of the pigment layer deposited in a).
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 25, 2016
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Jean-Philippe Savary, André Beyrle, Kamel Chahboune
  • Patent number: 9470928
    Abstract: Disclosed is a homeotropic alignment liquid crystal film without an alignment layer and a method for preparing the same. More specifically, the present invention relates to a homeotropic alignment liquid crystal film without using a separate alignment layer to induce a homeotropic alignment of the liquid crystal in which a liquid crystal layer has a homeotropic alignment property by coating a polymerizable and reactive liquid crystalline mixture solution including a predetermined surfactant on a plastic substrate whose surface are hydrophilic-treated, and drying and UV irradiating the mixture solution; a method for preparing the same. The homeotropic alignment liquid crystal film prepared according to the present invention may be very useful as a major component of a viewing-angle compensation film and a retardation film, etc. in LCD, and has advantages of simplicity of the manufacturing process, its shortened manufacturing time, its mass production, etc.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: October 18, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Eun-kyung Kim, Dae-hee Lee, Moon-soo Park, Seung-hun Chae, Sin-young Kim
  • Patent number: 9440376
    Abstract: A method of forming a working mold including placing a substrate near an electrode in a chamber, the substrate (610) having at least a first structured surface (620); providing power to the electrode to create a plasma, —introducing vapor of liquid silicone molecules into the plasma; and depositing a release layer (630), the release layer (630) including a silicone containing polymer, the release layer (630) being deposited on at least a portion of the first structured surface of the substrate to form the working mold.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: September 13, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Guoping Mao, Moses M. David, Olester Benson, Jr., Robert J. DeVoe, Jennifer J. Sahlin
  • Patent number: 9431144
    Abstract: The present invention relates to an indium oxide film formed by chemical vapor deposition or atomic layer deposition, or to an oxide film containing indium, and to a method for forming same. By chemical vapor deposition or atomic layer deposition, wherein an indium material that is a liquid at room temperature is used, an oxide film containing indium can be formed on a substrate having a large area, and particularly a substrate for manufacturing a display device.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: August 30, 2016
    Assignee: UP Chemical Co., Ltd.
    Inventors: Wonyong Koh, Byungsoo Kim, Dong Hwan Ma
  • Patent number: 9417421
    Abstract: Methods for manufacturing cables and cables assemblies include providing particulate matter within a tube extruded about optical fiber. The particles may be accelerated so that as they strike the tube they mechanically attach to the tube.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: August 16, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Rodney M. Burns, Andrey V. Filippov, Riley S. Freeland, Daniel W. Hawtof, Warren W. McAlpine, Catharina L. Tedder
  • Patent number: 9404179
    Abstract: A CVD process for depositing a silica coating is provided. The process includes providing a glass substrate. The process also includes forming a gaseous mixture including a silane compound, oxygen, a fluorine-containing compound, and a radical scavenger such as ethylene or propylene. The gaseous mixture is directed toward and along the glass substrate and is reacted over the glass substrate to form the silica coating thereon.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: August 2, 2016
    Assignee: PILKINGTON GROUP LIMITED
    Inventors: Douglas Martin Nelson, Michael Martin Radtke, Steven Edward Phillips
  • Patent number: 9399234
    Abstract: An apparatus and method for open-atmosphere flame based spraying employs a nozzle to preheat, pressurize and atomize a mechanically pumped reactive and flammable liquid solution through a small orifice or a nozzle and then a set of pilot flames to combust the spray. The liquid feedstock is preheated to a supercritical temperature before reaching the nozzle and is pressurized before spraying due to a reduced size of the outlet port of the feedstock flow channel relative to the inlet. A supplementary collimating, or sheathing, gas is supplied to the flow channel of the feedstock and both the feedstock and the supplementary gas are uniformly heated before spraying. This arrangement helps to avoid clogging of the nozzle and results in satisfactory control of the properties of the particulate products of the spraying procedure.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: July 26, 2016
    Assignee: National Research Council of Canada
    Inventors: Radenka Maric, Thomas P. K. Vanderhoek, Justin Michael Roller
  • Patent number: 9394177
    Abstract: Methods of producing layers of patterned graphene with smooth edges are provided. The methods comprise the steps of fabricating a layer of crystalline graphene on a surface, wherein the layer of crystalline graphene has a crystallographically disordered edge, and decreasing the crystallographic disorder of the edge of the layer of crystalline graphene by heating the layer of crystalline graphene on the surface at an elevated temperature in a catalytic environment comprising carbon-containing molecules.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 19, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Michael S. Arnold, Padma Gopalan, Nathaniel S. Safron, Myungwoong Kim
  • Patent number: 9375805
    Abstract: Method for the microdeformation of the front face of a thin part, by modifying the rear face or the periphery of the part. According to the invention, which can notably be used to correct the wave surface of a mirror, a local treatment is applied to the rear face or to the periphery which causes a static microdeformation, which is frozen once and for all, of the front face, without applying any mechanical force to the part.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: June 28, 2016
    Assignee: Commissariat a L'Energie Atomique et aux Energies Alternatives
    Inventors: Herve Piombini, David Damiani
  • Patent number: 9371684
    Abstract: A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: June 21, 2016
    Assignees: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Jochen Butz, Uwe Kriltz, Artur Siwek, Anton Dietrich, Jens-Peter Muller, Jean-Marc Lemmer, Richard Blacker
  • Patent number: 9334167
    Abstract: The present invention relates to a method of forming nanostructures or nanomaterials. The method comprises providing a thermal control barrier on a substrate and forming the nanostructures or nanomaterials. The method may, for example, be used to form carbon nanotubes by plasma enhanced chemical vapor deposition using a carbon containing gas plasma: The temperature of the substrate may be maintained at less than 350° C. while the carbon nanotubes are formed.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: May 10, 2016
    Assignee: SURREY NANOSYSTEMS LIMITED
    Inventors: Sembukutiarachilage Ravi Silva, Ben Poul Jensen, Guan Yow Chen