Patents Examined by Michelle Estrada
  • Patent number: 8013364
    Abstract: A structure having air gaps between interconnects is disclosed. A first insulating material is deposited over a workpiece, and a second insulating material having a sacrificial portion is deposited over the first insulating material. Conductive lines are formed in the first and second insulating layers. The second insulating material is treated to remove the sacrificial portion, and at least a portion of the first insulating material is removed, forming air gaps between the conductive lines. The second insulating material is impermeable as deposited and permeable after treating it to remove the sacrificial portion. A first region of the workpiece may be masked during the treatment, so that the second insulating material becomes permeable in a second region of the workpiece yet remains impermeable in the first region, thus allowing the formation of the air gaps in the second region, but not the first region.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Markus Naujok, Hermann Wendt, Alois Gutmann, Muhammed Shafi Pallachalil
  • Patent number: 8008181
    Abstract: Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: August 30, 2011
    Assignee: The Regents of The University of California
    Inventors: Zuzanna Liliental-Weber, Rogerio Luis Maltez, Hadis Morkoc, Jinqiao Xie
  • Patent number: 8008123
    Abstract: A manufacturing method of a semiconductor device, including a first step of forming a first electrode pad at an external edge part of a semiconductor chip mounting area of a supporting board; a second step of fixing a rear surface of a semiconductor chip having a main surface, the main surface where a second electrode pad is formed, to an inside of an area of the main surface of the supporting board, the area where the first electrode pad is formed; a third step of forming a first internal connecting terminal on the first electrode pad, and forming a second internal connecting terminal on the second electrode pad; and a fourth step of forming a first insulation layer on the main surface of the supporting board.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: August 30, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Syota Miki
  • Patent number: 8003475
    Abstract: A method for fabricating a transistor structure with a first and a second bipolar transistor having different collector widths is presented. The method includes providing a semiconductor substrate, introducing a first buried layer of the first bipolar transistor and a second buried layer of the second bipolar transistor into the semiconductor substrate, and producing at least a first collector region having a first collector width on the first buried layer and a second collector region having a second collector width on the second buried layer. A first collector zone having a first thickness is produced on the second buried layer for production of the second collector width. A second collector zone having a second thickness is produced on the first collector zone. At least one insulation region is produced that isolates at least the collector regions from one another.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: August 23, 2011
    Assignee: Infineon Technologies AG
    Inventors: Josef Böck, Rudolf Lachner, Thomas Meister, Reinhard Stengl, Herbert Schäfer, Martin Seck
  • Patent number: 7998829
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a method includes removing a portion of a semiconductor material using an electrochemical etch to form a first cavity, a second cavity, wherein the first cavity is isolated from the second cavity, a first protrusion is between the first cavity and the second cavity, and the semiconductor material comprises silicon. The method further includes performing a thermal oxidation to convert a portion of the silicon of the semiconductor material to silicon dioxide and forming a first dielectric material over the first cavity, over the second cavity, over at least a portion of the semiconductor material, and over at least a portion of the first protrusion. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: August 16, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Michael Albert Tischler
  • Patent number: 7993973
    Abstract: The present invention provides a structure combining an IC integrated substrate and a carrier, which comprises a carrier and an IC integrated substrate formed on the carrier. The interface between the IC integrated substrate and the carrier has a specific area at which the interface adhesion is different from that at the remaining area of the interface. The present invention also provides a method of manufacturing the above structure and a method of manufacturing electronic devices using the above structure.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: August 9, 2011
    Assignee: Princo Corp.
    Inventor: Chih-kuang Yang
  • Patent number: 7994574
    Abstract: A double-structure silicon on insulator (SOI) substrate with a silicon layer, an insulation film (silicon oxide film), a silicon layer, and an insulation film in this order from the side of the surface. The upper-layer insulation film is formed so as to have a uniform distribution of depth while the lower-layer insulation film is formed so as to have a non-uniform distribution of depth so that a thick portion may be formed in the silicon layer along a predetermined path. The refractive index of Si is 3.5 and the refractive index of SiO2 is 1.5. The thick portion of the silicon layer provides a core and the insulation films corresponding to this thick portion provide clads, thereby forming an optical waveguide along the predetermined path. The silicon layer at the side of the surface has a uniform thickness, thereby enabling characteristics of MOS devices fabricated on various portions of the silicon layer to be met with each other easily and facilitating a design of the electrical device as a whole.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 9, 2011
    Assignee: Sony Corporation
    Inventor: Koichiro Kishima
  • Patent number: 7993970
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. The method is carried out by forming solder pads on a substrate by wet etching, flipping a semiconductor chip having a plurality of connection bumps formed on an active surface of the semiconductor chip for the connection bumps to be mounted by compression on the solder pads of the substrate correspondingly, at a temperature of the compression between the connection bumps and the solder pads lower than the melting points of the solder pads and the connection bumps, so as to allow the semiconductor chip to be engaged with and electrically connected to the substrate through the connection bumps and the solder pads, thereby enhancing the bonding strength of the solder pads and the connection bumps and increasing the fabrication reliability.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: August 9, 2011
    Assignee: UTAC (Taiwan) Corporation
    Inventor: Shiann-Tsong Tsai
  • Patent number: 7994040
    Abstract: A method for forming a semiconductor device is disclosed. A substrate including a gate dielectric layer and a gate electrode layer sequentially formed thereon is provided. An offset spacer is formed on sidewalls of the gate dielectric layer and the gate electrode layer. A carbon spacer is formed on a sidewall of the offset spacer, and the carbon spacer is then removed. The substrate is implanted to form a lightly doped region using the gate electrode layer and the offset spacer as a mask. The method may also include providing a substrate having a gate dielectric layer and a gate electrode layer sequentially formed thereon. A liner layer is formed on sidewalls of the gate electrode layer and on the substrate. A carbon spacer is formed on a portion of the liner layer adjacent the sidewall of the gate electrode layer. A main spacer is formed on a sidewall of the carbon spacer. The carbon spacer is removed to form an opening between the liner layer and the main spacer.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: August 9, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Hwa Chi, Wen-Chuan Chiang, Mu-Chi Chiang, Chang-Ku Chen
  • Patent number: 7981706
    Abstract: A photoresist composition includes an alkali-soluble resin, a dissolution inhibitor including a quinone diazide compound, a first additive including a benzenol compound represented by the following Chemical Formula 1, a second additive including an acrylic copolymer represented by the following Chemical Formula 2 and an organic solvent. Accordingly, heat resistance of a photoresist pattern may be improved, and the photoresist pattern may be readily stripped. As a result, crack formation in the photoresist pattern may be reduced and/or prevented.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 19, 2011
    Assignees: Samsung Electronics Co., Ltd., Dongwoo Fine-Chem
    Inventors: Jeong-Min Park, Jung-Soo Lee, Won-Young Chang, Eun-Sang Lee, In-Ho Yu, Seong-Hyeon Kim
  • Patent number: 7982296
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 19, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 7982310
    Abstract: A semiconductor device is provided comprising: a semiconductor element including a plurality of electrodes; first wirings coupled to the electrodes and directed toward a center of the semiconductor element from a portion coupled to the electrodes; second wirings coupled between the first wirings and external terminals, the second wirings being directed to an outer area of the semiconductor element relative to the center; and at least one resin layer formed between the first wirings and the second wirings.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 19, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Haruki Ito
  • Patent number: 7980198
    Abstract: It is an object of the present invention to provide a doping apparatus, a doping method, and a method for fabricating a thin film transistor that can carry out doping to the carrier concentration which is optimum for obtaining the desired electric characteristic non-destructively and in an easy manner. In accordance with the present invention, an electric characteristic of a semiconductor element (threshold voltage in a transistor and the like) is correctly and precisely monitored by using a contact angle, and is controlled by controlling a doping method. In addition, the present invention can be momentarily acquired information by in-situ monitoring the characteristic and can be fed back without a time lag.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: July 19, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Naoto Yamade
  • Patent number: 7968421
    Abstract: Manufacturing a semiconductor device includes defining bulb-type trenches having spherical portions in a silicon substrate. Oxide layers are formed in surfaces of spherical portions of the bulb-type trenches by conducting an oxidation process for the silicon substrate having the bulb-type trenches defined therein. An insulation layer is formed on the entire surface of the silicon substrate including the surfaces of the bulb-type trenches, which have the oxide layers formed in the surfaces of the spherical portions thereof. Isolation trenches are defined by etching the insulation layer, whereby SOI structures having the oxide layers interposed between portions of the silicon substrate are formed.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: June 28, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Jung Shin
  • Patent number: 7968436
    Abstract: Copper diffusion barrier films having low dielectric constants are suitable for a variety of copper/inter-metal dielectric integration schemes. Copper diffusion barrier films in accordance with the invention are composed of one or more layers of silicon carbide, at least one of the silicon carbide layers having a composition of at least 40% carbon (C), for example, between about 45 and 60% carbon (C). The films' high carbon-content layer will have a composition wherein the ratio of C to Si is greater than 2:1; or >3:1; or >4:1; or >5.1. The high carbon-content copper diffusion barrier films have a reduced effective k relative to conventional barrier materials.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: June 28, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Yongsik Yu, Karen Billington, Xingyuan Tang, Haiying Fu, Michael Carris, William Crew
  • Patent number: 7968474
    Abstract: The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 28, 2011
    Assignees: Nanosys, Inc., Sharp Kabushiki Kaisha
    Inventors: Samuel Martin, Xiangfeng Duan, Katsumasa Fujii, James M. Hamilton, Hiroshi Iwata, Francisco Leon, Jeffrey Miller, Tetsu Negishi, Hiroshi Ohki, J. Wallace Parce, Cheri X. Y. Pereira, Paul John Schuele, Akihide Shibata, David P. Stumbo, Yasunobu Okada
  • Patent number: 7964459
    Abstract: A method for creating a non-volatile memory array includes implanting pocket implants in a substrate at least between mask columns of a given width and at least through an ONO layer covering the substrate, generating increased-width polysilicon columns from the mask columns, generating bit lines in the substrate at least between the increased-width polysilicon columns and depositing oxide at least between the polysilicon columns.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: June 21, 2011
    Assignee: Spansion Israel Ltd.
    Inventors: Eli Lusky, Assaf Shappir, Rustom Irani, Boaz Eitan
  • Patent number: 7964038
    Abstract: Methods and apparatus for providing an improved azimuthal thermal uniformity of a substrate are provided herein. In some embodiments, a substrate support for use in a semiconductor process chamber includes a susceptor plate; and a supporting member to support a backside of the susceptor plate proximate an outer edge thereof, wherein the supporting member substantially covers the backside of the susceptor plate. In some embodiments, the substrate support is disposed in a process chamber having at least some lamps disposed below the supporting member and utilized for heating the back side of the susceptor plate.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 21, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kailash Kiran Patalay, Jean R. Vatus, Dean Berlin
  • Patent number: 7960256
    Abstract: In a first aspect, a method of forming an epitaxial film on a substrate is provided. The method includes (a) providing a substrate; (b) exposing the substrate to a silicon source and a carbon source so as to form a carbon-containing silicon epitaxial film; (c) encapsulating the carbon-containing silicon epitaxial film with an encapsulating film; and (d) exposing the substrate to Cl2 so as to etch the encapsulating film. Numerous other aspects are provided.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: June 14, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Yihwan Kim, Xiaowei Li, Ali Zojaji, Nicholas C. Dalida, Jinsong Tang, Xiao Chen, Arkadii V. Samoilov
  • Patent number: 7960806
    Abstract: A sub-mount, a light emitting diode package, and a method of manufacturing thereof are disclosed. A sub-mount, on which multiple light emitting diodes are mounted, can include a multiple number of metal bodies on which the light emitting diodes are respectively mounted, and an oxide wall interposed between the metal bodies such that the adjacent metal bodies are supported by each other but electrically disconnected from each other. By utilizing certain embodiments of the invention, a high heat releasing effect may be obtained, and manufacturing costs may be reduced.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: June 14, 2011
    Assignee: Samsung LED Co., Ltd.
    Inventors: Young-Ki Lee, Seog-Moon Choi, Hyung-Jin Jeon, Sang-Hyun Shin