Patents Examined by Michelle R. Connelly
  • Patent number: 11971574
    Abstract: Configurations for an interferometric device used for multiplexing and de-multiplexing light are disclosed. The interferometric device may include a first input waveguide, a second input waveguide, an interferometric waveguide, and an output waveguide. A fundamental mode of light may be launched into the first and second input waveguides, and the interferometric waveguide may receive the fundamental mode and generate a higher order mode of light, where the two modes of light may be superimposed while propagating through the interferometric waveguide. The two modes of light may be received at an output waveguide that collapses the two modes into a single mode. The light propagating through the interferometric device may be used for increasing optical power even though the wavelengths of light may be different from one another. Additionally, the interferometric device may reduce coherent noise.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: April 30, 2024
    Assignee: Apple Inc.
    Inventors: Yi-Kuei Wu, Lucia Gan
  • Patent number: 11973535
    Abstract: A wavelength monitoring circuit obtains a light output proportional to only an input optical signal, independent of wavelength, by adding a light split circuit to the configuration in the related art, or changing the light split circuit to a light trifurcation circuit. In addition, wavelength monitoring with high accuracy is possible while improving the resistance to noise. The extraction of the light output proportional to only the input optical signal is performed by a light split circuit for input light at the top stage of the wavelength monitoring circuit or a light split circuit for interference in a stage in the middle of the circuit. The changed light split circuit causes the MZI included in the wavelength monitoring circuit to operate in a state of losing the balance of the configuration or the optical signal level, and increases the signal level near the bottom portion of the transmission characteristics.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 30, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Osamu Moriwaki, Manabu Oguma, Kenya Suzuki, Takashi Go, Yuichiro Ikuma
  • Patent number: 11966104
    Abstract: An optical modulator includes a substrate having a main surface including a first area and a second area, an optical modulation portion disposed on the first area, and an optical waveguide portion disposed on the second area. The optical modulation portion includes a first mesa waveguide and an electrode connected to the first mesa waveguide. The first mesa waveguide includes a p-type semiconductor layer, a first core layer, and an n-type semiconductor layer. The optical waveguide portion includes a second mesa waveguide. The second mesa waveguide includes a first cladding layer, a second core layer, and a second cladding layer. The second core layer is optically coupled to the first core layer. The first cladding layer contains a p-type dopant and protons. The second cladding layer contains an n-type dopant.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: April 23, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Makoto Ogasawara, Naoya Kono, Mitsuru Ekawa
  • Patent number: 11963663
    Abstract: A fibre endoscope system (100) comprises a catheter (10) with a probe head (10a) for entering into a body cavity (C) adjacent or near a sample region (S). A source fiber (11) has a first fiber ending (11a) and a signal fiber (12) has a second fiber ending (12a) both remote from the probe head (10a) but separate. A sampling fiber (13) has a third fiber ending (13a) disposed at the probe head (10a). A fiber coupler (15) is configured to optically couple at least the source fiber (11) to the sampling fiber (13), and the sampling fiber (13) to the signal fiber (12). A sampling fiber length (L13) of the sampling fiber (13) between a fiber coupler (15) and the third fiber ending (13a) is shorter than a source fiber length (L11) of the source fiber (11) between the fiber coupler (15) and the first fiber ending (11a).
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: April 23, 2024
    Assignee: Stichting VU
    Inventors: Fabio Feroldi, Johannes Fitzgerald De Boer
  • Patent number: 11963293
    Abstract: A method for manufacturing a circuit board structure with a waveguide is provided. The method includes: providing a first substrate unit, a second substrate unit, a third substrate unit, and two adhesive layers, the first substrate unit including a first dielectric layer and a first conductive layer, the first conductive layer including a first shielding area and two first artificial magnetic conductor areas disposed on two sides of the first shielding area; the second substrate unit including a second dielectric layer and a second conductive layer, the second conductive layer including a second shielding area; the third substrate unit defining a first slot, and the adhesive layer defining a second slot; stacking the first substrate unit, one of the adhesive layers, the third substrate unit, another one of the adhesive layers, and the second substrate unit in that order; pressing the intermediate body.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 16, 2024
    Assignee: BOARDTEK ELECTRONICS CORPORATION
    Inventor: Chien-Cheng Lee
  • Patent number: 11960128
    Abstract: A photonics package may include a substrate, a hanging connector, and a fast-axis collimator (“FAC”). The hanging connector is typically affixed to a side of the substrate other than the side through which a light output is emitted. The hanging connector may be L-shaped in cross-section, having a base section and an extended section projecting from the base section. The base section affixes to the substrate while the extended section affixes to the FAC, so that the FAC extends downward along the emitter surface of the substrate; a vertex of the FAC is coplanar with an emitter outputting the light output.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: April 16, 2024
    Assignee: Apple Inc.
    Inventors: Alexander Goldis, Jeffrey T. Hill, Michael J. Bishop
  • Patent number: 11955777
    Abstract: An optical combiner includes: a plurality of first input optical fibers that each include a core; a bridge fiber that includes a bridge input surface connected to the cores of the plurality of first input optical fibers, a diameter reduction portion having a diameter that decreases away from the bridge input surface along an optical axis of the optical combiner, and a bridge output surface located opposite to the bridge input surface along the optical axis; an intermediate optical fiber that includes a core connected to the bridge output surface of the bridge fiber; a second input optical fiber that includes a core; and an output optical fiber that includes a first optical waveguide connected to the core of the intermediate optical fiber, and a second optical waveguide connected to the core of the second input optical fiber.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: April 9, 2024
    Assignee: Fujikura Ltd.
    Inventors: Tomoyuki Fujita, Ryokichi Matsumoto, Yutaka Yamaguchi, Takuya Kobayashi, Kiwamu Suzuki
  • Patent number: 11953731
    Abstract: An automated fiber optic patch-panel/cross-connect system comprised of a stacked arrangement of multiple replaceable modules, including a first multiplicity of fiber modules, each with a second multiplicity of reconfigurable internal fiber connectors; a common robot module shared among fiber modules, wherein any connector within a fiber module in the system can be moved to any other connector of any other fiber module in the system; a power management module that distributes electrical power to the fiber modules and the robot module; and a server module that generates commands that are placed on communication bus to activate robot and fiber modules. The modules are physically separated and spatially arranged to be serviced replaced without interrupting fiber connections previously established in the system.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 11953673
    Abstract: An optical coupling having a coupling part and a mating coupling part which are detachably connected to one another is provided, a connection element being arranged on the coupling part and a fitting mating connection element being arranged on the mating coupling part. These connection elements together form a common optical channel, and the mating connection element is arranged with play in the mating coupling part and without play in the coupling part.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: April 9, 2024
    Assignee: Schölly Fiberoptic GmbH
    Inventors: Wolfgang Meder, Martin Hercher
  • Patent number: 11947164
    Abstract: Described herein are photonic communication platforms and related packages. In one example, a photonic package includes a substrate carrier having a recess formed through the top surface of the substrate carrier. The substrate carrier may be made of a ceramic laminate. A photonic substrate including a plurality of photonic modules is disposed in the recess. The photonic modules may be patterned using a common photomask, and as a result, may share a same layer pattern. A plurality of electronic dies may be positioned on top of respective photonic modules. The photonic modules enable communication among the dies in the optical domain. Power delivery substrates may be used to convey electric power from the substrate carrier to the electronic dies and to the photonic substrate. Power delivery substrates may be implemented, for example, using bridge dies or interposers (e.g., silicon or organic interposers).
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: April 2, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Sukeshwar Kannan, Carl Ramey, Jon Elmhurst, Darius Bunandar, Nicholas C. Harris
  • Patent number: 11940657
    Abstract: A fiber optic connector assembly is mated with a bracket on a printed circuit board at one end and inserted into a backplane adapter that is adjacent a backplane. In particular a spring push in slidingly attached to the bracket and also to the housing of the fiber optic connector assembly. The housing of the fiber optic connector assembly insertable into the backplane adapter using passive alignment features. A fiber optic ferrule in the fiber optic connector assembly is biased in a forward direction by a spring in the spring push. At the same time the spring allows for movement of the spring push within the housing to allow for movement of the printed circuit board relative to the backplane adapter.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: March 26, 2024
    Assignee: US Conec Ltd.
    Inventors: Hiep V. Nguyen, Jason Higley, Darrell R. Childers, Michael E. Hughes
  • Patent number: 11940659
    Abstract: An optical integrated circuit (IC) structure includes: a substrate including a fiber slot formed in an upper surface of the substrate and extending from an edge of the substrate, and an undercut formed in the upper surface and extending from the fiber slot; a semiconductor layer disposed on the substrate; a dielectric structure disposed on the semiconductor layer; an interconnect structure disposed in the dielectric structure; a plurality of vents that extend through a coupling region of the dielectric structure and expose the undercut; a fiber cavity that extends through the coupling region of dielectric structure and exposes the fiber slot; and a barrier ring disposed in the dielectric structure, the barrier ring surrounding the interconnect structure and routed around the perimeter of the coupling region.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chen-Hao Huang, Hau-Yan Lu, Sui-Ying Hsu, Yuehying Lee, Chien-Ying Wu, Chia-Ping Lai
  • Patent number: 11932571
    Abstract: Radiation curable compositions for coating optical fibers are disclosed herein. In an embodiment, a radiation curable composition includes a reactive oligomer component, wherein a portion of the polymerizable groups of the reactive oligomer component include methacrylate groups; a reactive diluent monomer component, wherein a portion of the polymerizable groups of the reactive diluent monomer component include acrylate groups, acrylamide groups, or N-vinyl amide groups, or combinations thereof; a photoinitiator component, and an optional additive component. Also described are methods of coating the radiation curable compositions elsewhere described, and the fiber optic coatings and cables resulting therefrom.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: March 19, 2024
    Assignee: Covestro (Netherland) B.V.
    Inventor: Johan Franz Gradus Antonius Jansen
  • Patent number: 11934012
    Abstract: An optical adjustment apparatus includes a measurement-light irradiation part that has a plurality of second optical fibers and emits, with timings different from each other, a plurality of lights having a single wavelength via the second optical fibers, an optical fiber block that holds exit-side end portions of the first and second optical fibers, a light detection part that receives and detects a plurality of reflected lights via the second optical fibers, a tilt calculation part that compares, with each other, variations with time of intensities of the respective reflected lights and calculates a tilt of the optical fiber block relative to the optical substrate, and a distance calculation part that calculates an inter-end surface distance between the optical substrate and the optical fiber block, based on a variation with time of an intensity of at least one reflected light.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: March 19, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Tomotaka Furuta, Junichi Kamatani, Tatsuro Shiraishi
  • Patent number: 11921331
    Abstract: An optical receptacle including a first optical surface configured to allow incidence of light emitted from the light emitting element; a second optical surface configured to emit, toward the optical transmission member, light emitted from the light emitting element and advanced inside the optical receptacle; and a diffraction surface disposed on the first optical surface, on the second optical surface, or on a light path between the first optical surface and the second optical surface. The diffraction surface is configured such that primary diffraction light of the light emitted from the light emitting element reaches an end portion of the optical transmission member, and that zero-order diffraction light of the light emitted from the light emitting element does not reach the end portion of the optical transmission member.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: March 5, 2024
    Assignee: Enplas Corporation
    Inventors: Takahiro Izawa, Akinobu Seki
  • Patent number: 11899251
    Abstract: A vertical integrated photonics chiplet assembly includes a package substrate and an external device connected to a top surface of the package substrate. A photonics chip is disposed within the package substrate. The photonics chip includes optical coupling devices positioned at a top surface of the photonics chip. A plurality of conductive via structures are disposed within the package substrate in electrical connection with electrical circuits within the photonics chip. The plurality of conductive via structures are electrically connected through the package substrate to the external device. An opening is formed through the top surface of the substrate to expose a portion of the top surface of the photonics chip at which the optical coupling devices are positioned. An optical fiber array is disposed and secured within the opening such that a plurality of optical fibers of the optical fiber array optically couple to the optical coupling devices.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: February 13, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Chong Zhang, Roy Edward Meade
  • Patent number: 11892744
    Abstract: Provided is a novel beam delivery system for quantum computing applications that includes a beam delivery photonic integrated circuit on a chip and an optical relay assembly. The beam delivery photonic integrated circuit on a chip may contain one or more layers, and a layer may contain one or more inputs connecting one or more outputs. The optical relay assembly receives a beam or beams from one or more outputs from a layer of the beam delivery photonic integrated circuit. The optical relay assembly focuses each received beam on a corresponding position of an atomic object confinement apparatus.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: February 6, 2024
    Assignee: Quantinuum LLC
    Inventors: Mary A. Rowe, Michael Belt, Bryan T. Spann, Molly R. Krogstad, Robert D. Horning, David A. Deen, Michael D. Young, Nathan Worts
  • Patent number: 11886052
    Abstract: Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery system, comprising an optical fiber including a first length of fiber comprising a first RIP formed to enable, at least in part, modification of one or more beam characteristics of an optical beam by a perturbation assembly arranged to modify the one or more beam characteristics, the perturbation assembly coupled to the first length of fiber or integral with the first length of fiber, or a combination thereof and a second length of fiber coupled to the first length of fiber and having a second RIP formed to preserve at least a portion of the one or more beam characteristics of the optical beam modified by the perturbation assembly within one or more first confinement regions.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 30, 2024
    Assignee: nLIGHT, Inc
    Inventors: Dahv A. V. Kliner, Roger Farrow
  • Patent number: 11886013
    Abstract: Passive alignment and connection between a fiber array and a plurality of optical waveguides terminating along an edge of a photonic IC is provided by a controlled mating between V-grooves formed in a fiber support substrate and alignment ridges formed to surround waveguide terminations along an edge of a photonic IC. The V-grooves of the fiber support substrate are spaced to define the same pitch as the waveguides on the photonic IC, with the height and width of the alignment ridges formed to engage with the V-grooves upon mating of the fiber support substrate with the photonic IC. The individual fibers are positioned within associated V-grooves such that their endfaces are retracted from a proximal end portion of the support structure. It is this proximal end portion that mates with the alignment ridges on the photonic IC.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 30, 2024
    Assignee: Aayuna Inc.
    Inventors: Kalpendu Shastri, Anujit Shastri, Soham Pathak, Bipin D. Dama, Alan Leonhartsberger, Rutvij Dave, Rao Yelamarty
  • Patent number: 11874510
    Abstract: An optical cable subassembly includes one or more optical waveguides, at least light coupling unit comprising a first attachment area permanently attached to the optical waveguides, and at least one cable retainer comprising a second attachment area permanently attached to the optical waveguides and adapted to be installed in a housing. A length of the optical waveguides between the first attachment area and the second attachment area allows a bend in the optical waveguides that provides a predetermined mating spring force at a predetermined angle of the light coupling unit when installed in the housing.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: January 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael A. Haase, Terry L. Smith, Alexander R. Mathews, James M. Nelson