Patents Examined by Michelle R. Connelly
  • Patent number: 9859037
    Abstract: A downhole cable that has a cable core with an inner jacket located about it. The inner jacket has a shell located thereabout, and a pair of strength member layers surrounds the inner shell. Interstitial spaces of the strength member layers are filled with bonding layers. One of the strength member layers is at a contra-helical lay angle to the other. An outer jacket is located about one of the strength member layers, and the outer jacket is bonded with the bonding layers.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: January 2, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Joseph Varkey, Sheng Chang, Burcu Unal Altintas, Willem Wijnberg, Qingdi Huang
  • Patent number: 9857531
    Abstract: A system comprises a first optical component comprising at least one waveguide and at least one self-alignment feature; and a second optical component comprising at least another waveguide and at least another self-alignment feature; wherein the self-alignment feature of the second optical component engage to assist in optically-coupling the waveguide of the first optical component and the waveguide of the second optical component when the first optical component has a manufacturing tolerance in a given geometric dimension and is mounted in the second optical component.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Daniel M. Kuchta, Benjamin Giles Lee, Laurent Schares, Clint Lee Schow
  • Patent number: 9857170
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparatus may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: January 2, 2018
    Assignee: MAGIC LEAP, INC.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 9851499
    Abstract: An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 26, 2017
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Hazel Benton Matthews, III, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 9846347
    Abstract: An apparatus for modulating a beam of light with balanced push-pull mechanism. The apparatus includes a first waveguide comprising a first PN junction on a silicon-on-insulator substrate and a second waveguide comprising a second PN junction on the silicon-on-insulator substrate. The second PN junction is a replica of the first PN junction shifted with a distance. The apparatus further includes a first source electrode and a first ground electrode coupled respectively with the first PN junction and a second source electrode and a second ground electrode coupled respectively with the second PN junction. The apparatus additionally includes a third ground electrode disposed near the second PN junction at the distance away from the second ground electrode, wherein the first ground electrode, the second ground electrode, and the third ground electrode are commonly grounded to have both PN junctions subjected to a substantially same electric field varied in ground-source-ground pattern.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: December 19, 2017
    Assignee: INPHI CORPORATION
    Inventor: Masaki Kato
  • Patent number: 9846284
    Abstract: Optical fiber connector assembly for a fiber optic cable includes an optical fiber having an end portion terminated with a ferrule. The optical fiber connector assembly includes: a sleeve configured to at least partially house the end portion of the optical fiber terminated with the ferrule; a connector including a body extending lengthwise and having an internal passageway for the sleeve, the body having a distal portion, configured to house the sleeve and to mate with a corresponding receptacle, and a proximal portion configured to be coupled to an end portion of the fiber optic cable, the proximal portion having on its lateral surface at least one aperture; and a crimping element adapted to couple the proximal portion of the body to the end portion of the fiber optic cable at the at least one aperture. A pre-connectorized fiber optic cable includes a fiber optic cable and the optical fiber connector assembly mounted upon an end portion of the fiber optic cable.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: December 19, 2017
    Assignee: PRYSMIAN S.P.A
    Inventors: Ian Griffiths, Matt Kerry, Stephen Pike
  • Patent number: 9841565
    Abstract: A method for producing a ridge optical waveguide having low coupling losses between the ridge optical waveguide and an optical fiber includes forming on the surface of a dielectric substrate an optical waveguide having a first end and a second end opposite the first end; cutting out two parallel recesses spaced apart by a distance wr on the surface of the dielectric substrate to form a rigid optical waveguide with an increased width (wr) between the two recesses. The recesses are cut such that the depth of each recess changes continuously and gradually between a zero depth at the height of the first end of the optical waveguide and a maximum depth (Hm) at a pre-determined distance (Ip) from the first end.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: December 12, 2017
    Assignees: CENTRE NATIONAL POUR LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE FRANCHE-COMTE
    Inventors: Nadege Courjal, Arnaud Gerthoffer, Fabien Henrot, Jean-Yves Rauch, Clement Guyot, Blandine Edouard
  • Patent number: 9841575
    Abstract: An optical port including: a base capable of being attached substantially parallel to a planar surface; a spool arranged so as to rotate about a shaft, which is substantially perpendicular to the base; an optical cable rolled up into the spool; and a connector. An inner side of the connector is connected inside the port to a first end, referred to as the “inner end”, of the cable. An outer side of the connector is intended to be connected to an outer optical connection plug. The cable is intended to be unreeled out from the port by pulling one second end, referred to as the “outer end”, of the cable. The pulling rotates the spool on the shaft. The connector is secured to the spool and arranged so as to take at least one position outside the radial configuration of the spool.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: December 12, 2017
    Assignee: ORANGE
    Inventor: Daniel Lecoq
  • Patent number: 9829630
    Abstract: A reflective structure includes an input/output port and an optical splitter coupled to the input/output port. The optical splitter has a first branch and a second branch. The reflective structure also includes a first resonant cavity optically coupled to the first branch of the optical splitter. The first resonant cavity comprises a first set of reflectors and a first waveguide region disposed between the first set of reflectors. The reflective structure further includes a second resonant cavity optically coupled to the second branch of the optical splitter. The second resonant cavity comprises a second set of reflectors and a second waveguide region disposed between the second set of reflectors.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 28, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: Derek Van Orden, Amit Mizrahi, Timothy Creazzo, Stephen B. Krasulick
  • Patent number: 9817295
    Abstract: An injection modulator for modulation of optical radiation, having an optical waveguide and a diode structure, having at least two p-doped semiconductor portions, at least two n-doped semiconductor portions and at least one lightly or undoped intermediate portion between the p-doped and n-doped portions. The p-doped portions when viewed in the longitudinal direction of the waveguide are offset with respect to the n-doped portions and the diode structure is arranged in a resonance-free portion of the waveguide. The p-doped portions lie on one side of the waveguide, the n-doped portions lie on the other side of the waveguide and the intermediate portion lies in the center, each portion extends transversely with respect to the waveguide longitudinal direction in the direction of the waveguide center of the waveguide and no p-doped portion when viewed in the longitudinal direction of the waveguide overlaps any n-doped portion.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: November 14, 2017
    Assignees: TECHNISCHE UNIVERSITAT BERLIN, SICOYA GMBH
    Inventors: Stefan Meister, Aws Al-Saadi, Sebastian Kupijai, Christoph Theiss, Hanjo Rhee, Lars Zimmermann, David Stolarek
  • Patent number: 9817198
    Abstract: The present disclosure provides an optical module. The optical module of the present disclosure may include: a base, the base being provided with a fixing part configured to place a lens; the lens located in the fixing part; and a laser, located on the base, the laser being configured to transmit an optical signal to the lens, where fixing adhesive is filled symmetrically in gaps between two symmetric sides of the lens and the fixing part.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: November 14, 2017
    Assignees: Hisense Broadband Multimedia Technologies Co., Ltd., Hisense Broadband Multimedia Technologies, Ltd.
    Inventors: Shiquan Yang, Xianpeng Du, Hao Wang, Hongwei Mu, Fang Liu
  • Patent number: 9810863
    Abstract: An optical component assembly includes a light-guiding member; a cylindrical member which retains the light-guiding member in a through hole thereof; and a projection which is provided at one end of the cylindrical member so as to extend beyond an outer periphery of the cylindrical member, and is engageable in a groove which is formed in a cylindrical shell so as to extend in an axial direction of the cylindrical shell and then turn at a distal end thereof in a circumferential direction of the cylindrical shell. By fixing the cylindrical shell to the projection, the cylindrical shell becomes attachable and detachable. It is possible to provide an optical receptacle and a transceiver module for optical communications having easy removal of foreign matters.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: November 7, 2017
    Assignee: KYOCERA Corporation
    Inventors: Tomoyoshi Akashi, Tsuyoshi Tanaka, Keisuke Takebe
  • Patent number: 9810965
    Abstract: An optical module includes an optical modulator that includes a cutout portion and a first terminal projecting to the inside of the cutout portion, and is configured to perform optical modulation by using an electrical signal input to the first terminal; a driver, at least a part of the driver being housed inside the cutout portion, that is configured to generate an electrical signal; an electrode pattern that extends from the driver inside the cutout portion, and is configured to transmit the electrical signal generated by the driver; and a flexible board having flexibility, one end of the flexible board being electrically connected with the first terminal inside the cutout portion, another end of the flexible board extending in the direction away from the driver, the flexible board being connected with the electrode pattern and configured to input the electrical signal transmitted by the electrode pattern to the first terminal.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 7, 2017
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventors: Akira Ishii, Shinji Maruyama, Masaki Sugiyama
  • Patent number: 9804341
    Abstract: An optical receptacle includes a fiber stub having an optical fiber with a core and cladding, a ferrule with a through-hole fixing the optical fiber, and a bonding agent fixing the optical fiber in the ferrule, and a holder holding the fiber stub. The optical fiber is disposed inside the through-hole over an entire region of the optical fiber, and includes a portion in which a core diameter and a fiber outer diameter decrease gradually toward an end surface of the ferrule on a side opposite to a side to be optically connected to a plug ferrule. The bonding agent is filled into a space between the optical fiber and an inner wall of the through-hole.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: October 31, 2017
    Assignee: Toto Ltd.
    Inventors: Sho Kondo, Satoshi Hakozaki, Hirotsugu Agatsuma
  • Patent number: 9804474
    Abstract: A light modulator includes a substrate providing an electro-optical effect and provided with first to third optical waveguides, a first modulation section that modulates a blue light flux passing through the first optical waveguide, a second modulation section that modulates a green light flux passing through the second optical waveguide, and a third modulation section that modulates a red light flux passing through the third optical waveguide, and L1<L2<L3 and S1>S2>S3 are satisfied, where L1 represents the length of the first modulation section, S1 represents the distance between a first reference line and a first exit section, L2 represents the length of the second modulation section, S2 represents the distance between a second reference line and a second exit section, L3 represents the length of the third modulation section, and S3 represents the distance between a third reference line and a third exit section.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: October 31, 2017
    Assignee: Seiko Epson Corporation
    Inventor: Junichi Okamoto
  • Patent number: 9804330
    Abstract: According to the present invention, a semiconductor device includes a substrate comprising a front end face, a rear end face and side faces, a plurality of semiconductor lasers provided on the substrate, a forward optical multiplexer to multiplex forward output light of the plurality of semiconductor lasers and output the multiplexed light to the front end face, a backward optical multiplexer to multiplex backward output light of the plurality of semiconductor lasers and output the multiplexed light to the rear end face and a plurality of backward waveguides connected to an output section of the backward optical multiplexer, wherein the plurality of backward waveguides includes a main waveguide disposed at a center of the output section and a plurality of lateral waveguides disposed on both sides of the main waveguide to bend toward the side faces and output light from the side faces diagonally to the side faces.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: October 31, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Ryosuke Nagao, Yoshifumi Sasahata, Eitaro Ishimura
  • Patent number: 9798091
    Abstract: The present disclosure relates to a fiber optic connector including a connector body (122) having a front end and a rear end. A shutter (74) is mounted at the front end of the connector body (122). The shutter (74) is movable relative to the connector body (122) between an open position and a closed position. The fiber optic connector (69) includes an optical fiber (100) having an end face that is accessible at the front end of the connector body (122) when the shutter (74) is in the open position. The fiber optic connector (69) also includes a cleaning material (501) provided at an inner side of the shutter (74) that covers the end face of the optical fiber (100) when the shutter (74) is in the closed position.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: October 24, 2017
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Sangram Keshari Samal, Mamoni Dash, Peter Martha Dubruel, Jan Watte, Stefano Beri, Ceren Ozdilek, Walter Mattheus, Danny Willy August Verheyden
  • Patent number: 9791646
    Abstract: An optical module with an improved coupling portion to couple an optical device with an external fiber is disclosed. The coupling portion includes a stub to secure a coupling fiber in a center thereof, a bush to support the stub, a sleeve to receive the stub in a portion thereof and an external ferrule in another portion, and a sleeve cover to cover the sleeve. The coupling portion further includes a latch put between the bush and the cover by being hooked with both the bush and the cover. The latch electrically isolates the bush from the cover even when the bush and the sleeve cover are made of metal.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: October 17, 2017
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Takeshi Okada
  • Patent number: 9791619
    Abstract: Microstructured optical fiber (MOF) includes a cladding extending a length between first and second ends. The cladding includes an inner porous microstructure that at least partially surrounds a hollow core. A perimeter contour of the hollow core has a non-uniform radial distance from a center axis of the cladding such that first segments of the cladding along the perimeter contour have a shorter radial distance from the center axis relative to second segments of the cladding along the perimeter contour. The cladding receives and propagates light energy through the hollow core, and the inner porous microstructure substantially confines the light energy within the hollow core. The cladding defines at least one port hole that extends radially from an exterior surface of the cladding to the hollow core. Each port hole penetrates the perimeter contour of the hollow core through one of the second segments of the cladding.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: October 17, 2017
    Assignee: General Electric Company
    Inventors: William Albert Challener, Niloy Choudhury, Sabarni Palit
  • Patent number: 9791640
    Abstract: An interposer for coupling an optical conduit to an optical component, said interposer comprising: (a) an optical component; (b) a first lens component having a first lens; (c) a second lens component having a second lens, said first and second lenses being configured to define an expanded-beam coupling therebetween; (d) at least one reflective surface optically coupled with said second lens; (e) a first optical path at least partially defined between said optical component and said first lens to accommodate a diverging light beam from said optical component to said first lens; (f) a second optical path at least partially defined between said second lens and said at least one reflective surface to accommodate a converging light beam from said second lens and said at least one reflective surface; and (g) a separable interface along said second optical path or at said expanded-beam coupling.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: October 17, 2017
    Assignee: TE Connectivity Corporation
    Inventors: Terry Patrick Bowen, William A. Weeks, James Toth, Jibin Sun, Sandeep Razdan