Patents Examined by Michelle R. Connelly
  • Patent number: 11554977
    Abstract: A method for making an optical fiber device may include using a three-dimensional (3D) printer to generate a preform body including an optical material. The preform body may have a 3D pattern of voids therein defining a 3D lattice. The method may further include drawing the preform body to form the optical fiber device.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 17, 2023
    Assignee: HARRIS CORPORATION
    Inventors: Christopher A. Corey, Susanne M. Lee
  • Patent number: 11550099
    Abstract: There is set forth herein a method including building a first photonics structure using a first wafer having a first substrate, wherein the building the first photonics structure includes integrally fabricating within a first photonics dielectric stack one or more photonics device, the one or more photonics device formed on the first substrate; building a second photonics structure using a second wafer having a second substrate, wherein the building the second photonics structure includes integrally fabricating within a second photonics dielectric stack a laser stack structure active region and one or more photonics device, the second photonics dielectric stack formed on the second substrate; and bonding the first photonics structure and the second photonics structure to define an optoelectrical system having the first photonics structure bonded the second photonics structure.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: January 10, 2023
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: William Charles, Douglas Coolbaugh, Douglas La Tulipe, Gerald L. Leake, Jr.
  • Patent number: 11543659
    Abstract: An imaging apparatus for conveying a virtual image superimposed within a view of an ambient environment has a waveguide having first and second surfaces. An in-coupling diffractive optic on one of the planar surfaces is disposed to direct image-bearing light beams into the waveguide. An out-coupling diffractive optic on one of the planar surfaces of the waveguide is disposed to direct the image-bearing light beams from the waveguide toward a viewer eyebox. An outer cover protects as least part of the waveguide from undesirable environmental influences of an ambient environment while supporting views of the ambient environment from the eyebox. A circular polarizer interposed between waveguide and the outer cover blocks the return of stray light into the waveguide.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: January 3, 2023
    Assignee: Vuzix Corporation
    Inventor: Robert J. Schultz
  • Patent number: 11543607
    Abstract: Infrared Remote Over Video Fiber (IROVF) transports any combination of uncompressed/unprocessed/native full quality, full bandwidth, zero latency, and mixed analog and digital signals including audio, video, data, Ethernet, USB, S/PDIF, and TOSLINK, over a fiber optic based cable added with integrated infrared remote control capabilities to remote control uni/bi-directional audio video and IR devices remotely from either sides of the cable Without requiring additional processing adapters, nor processing or reducing the specs of the other carried audio-video data signals which stays original uncompressed, untouched, and unprocessed for a perfect as-is full original functionality and quality.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: January 3, 2023
    Inventors: Luca Zanetti, Silvia Fioravanti
  • Patent number: 11543285
    Abstract: Aspects of the present disclosure describe distributed optical fiber sensing systems, methods, and structures that advantageously employ point sensors that send sensory data/information over an attached, distributed optical fiber sensor without using a separate network or communications facility.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 3, 2023
    Inventors: Junqiang Hu, Ting Wang
  • Patent number: 11520112
    Abstract: An optoelectronic device. The device comprising: a silicon-on-insulator, SOI, wafer, the SOI wafer including a cavity and an input waveguide, the input waveguide being optically coupled into the cavity; and a mirror, located within the cavity and bonded to a bed thereof, the mirror including a reflector configured to reflect light received from the input waveguide in the SOI wafer.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: December 6, 2022
    Assignee: Rockley Photonics Limited
    Inventors: Yi Zhang, Chia-Te Chou, William Vis, Amit Singh Nagra, Hooman Abediasl
  • Patent number: 11513300
    Abstract: An optical receptacle is disposed between a light-emitting element and an optical transmission member and configured to optically couple the light-emitting element and the optical transmission member, the optical receptacle including an incidence surface configured to allow incidence of light emitted from the light-emitting element; and an emission surface configured to emit, toward the optical transmission member, light entered from the incidence surface and travelled inside the optical receptacle, the emission surface being an inner surface of a recess. The emission surface includes a first emission surface having a substantially spherical cap shape, and a second emission surface contiguous with the first emission surface, the second emission surface having a shape of a side surface of a substantially frustum shape.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 29, 2022
    Assignee: ENPLAS CORPORATION
    Inventors: Hiroyoshi Kani, Honoka Sato
  • Patent number: 11513078
    Abstract: Distributed fiber optic sensors formed by covering the fibers with tubing are provided. The tubing including responsive materials formulated or configured to, responsive to exposure to one of a target chemical species and a target radiation particle, change a relative size and generate a localized effect on or in the optical fiber.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: November 29, 2022
    Assignees: Consolidated Nuclear Security, LLC, The University of Tennessee Research Foundation
    Inventors: Vincent E. Lamberti, Dayakar Penumadu
  • Patent number: 11500071
    Abstract: A LIDAR system includes a demultiplexer that separates an outgoing LIDAR signal into multiple LIDAR output signals that each carries a different channel and the different channels are each at a different wavelength. The system also includes a beam distributor that receives each of the LIDAR output signals. The beam distributor directs the received LIDAR output signals such that different LIDAR output signals travel away from the beam distributor in different directions.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: November 15, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Patent number: 11500165
    Abstract: An optical module includes: a substrate; one or more light sources that produce light that is an optical signal; one or more light reflection units that change the direction of travel of the light to a direction substantially perpendicular to the substrate; one or more optical waveguides that optically connect the one or more light sources and the one or more light reflection units to each other; and a lid that is attached to the substrate to cover the one or more light sources, the one or more light reflection units and the one or more optical waveguides. The lid has one or more lenses that collimate light directed by the one or more light reflection units and transmit the light to the outside of the lid.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: November 15, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuta Ueda, Hiroyuki Ishii, Koji Takeda, Takushi Kazama, Hitoshi Wakita
  • Patent number: 11500166
    Abstract: A passive optical alignment coupling between an optical connector having a first two-dimensional planar array of alignment features and a foundation having a second two-dimensional planar array of alignment features. One of the arrays is a network of orthogonally intersecting longitudinal grooves defining an array of discrete protrusions that are each in a generally pyramidal shape with a truncated top separated from one another by the orthogonally intersecting longitudinal grooves, and the other array is a network of longitudinal cylindrical protrusions. The cylindrical protrusions are received in the grooves, with protrusion surfaces of the cylindrical protrusions in contact with groove surfaces and the top of the discrete protrusions contacting the surface bound by the cylindrical protrusions.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: November 15, 2022
    Assignee: SENKO ADVANCED COMPONENTS, INC.
    Inventors: Robert Ryan Vallance, Yang Chen, Tewodros Mengesha
  • Patent number: 11493722
    Abstract: A stripping tool configured to sequentially strip the layers of a cable, such as a fiber optic cable. The stripping tool includes multiple channels, each with a distinct role in stripping a layer of the fiber optic tool. The user sequentially moves the cable from channel-to-channel while operating the tool. At the conclusion of these operations the cable is appropriately stripped and ready for a subsequent operation.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: November 8, 2022
    Assignee: Metra Electronics Corporation
    Inventor: Stewart Denton
  • Patent number: 11493705
    Abstract: A connection structure of optical waveguide chips includes a base substrate (2003) in which grooves (2013) are formed, spacer optical fibers (2006) each disposed for a corresponding one of the grooves (2013) and fitted in the groove (2013) while partially projecting from the base substrate (2003), and silica-based PLCs (2001, 2002) that are a plurality of optical waveguide chips in each of which grooves (2007) fitted on the projecting portions of the spacer optical fibers (2006) are formed at positions of an optical waveguide layer (2008) facing the grooves (2013), and each of which is mounted on the base substrate (2003) while being supported by the spacer optical fibers (2006). The silica-based PLCs (2001, 2002) are mounted on the base substrate (2003) such that incident/exit end faces of the optical waveguide layers (2008) face each other.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: November 8, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Kota Shikama, Hiroshi Ishikawa, Yuko Kawajiri, Atsushi Aratake
  • Patent number: 11487064
    Abstract: A ferrule-based fiber optic connectors having a connector assembly with a ferrule insertion stop for limiting the insertion of a ferrule into a ferrule sleeve are disclosed. In one embodiment, the fiber optic connector comprising a connector assembly, ferrule insertion stop, a connector sleeve assembly and a female coupling housing. The connector assembly comprises a ferrule and a resilient member for biasing the ferrule forward and the connector sleeve assembly comprises a housing and a ferrule sleeve, where the ferrule of the connector assembly is at least partially disposed in the ferrule sleeve when assembled. The ferrule insertion stop limits the depth that the ferrule may be inserted into the ferrule sleeve.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 1, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Micah Colen Isenhour, Thomas Theuerkorn
  • Patent number: 11480749
    Abstract: A multicore fiber optic cable comprising of a central fiber having a central fiber outer diameter, a central fiber coating surrounding the central fiber outer diameter of the central fiber, the central fiber coating having a continuous spiraled groove around the central fiber outer diameter, a dual core optical fiber having a dual core optical fiber geometry, the dual core optical fiber spiraled around the central fiber coating and disposed within the spiraled groove such that the dual core optical fiber is wound around the central fiber coating in a spiral pattern and the central fiber core geometry and the dual core optical fiber geometry are oriented longitudinally to negate link path length difference; and an outer sheath surrounding the central fiber coating and the dual core optical fiber.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: October 25, 2022
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Mark Beranek, Jordan Hollady, John Diehl, Jason McKinney
  • Patent number: 11480731
    Abstract: A splitter. In some embodiments, the splitter includes an input waveguide; a first output waveguide; a second output waveguide; a first internal waveguide, connected to the input waveguide and to the first output waveguide, and a second internal waveguide, coupled to the first internal waveguide and connected to the second output waveguide. The splitter may be configured, when fed, at the input waveguide, power in a fundamental mode of the input waveguide or power in a first order spatial mode of the input waveguide: to transmit at least 80% of the power in the fundamental mode to the first output waveguide, and to transmit at least 80% of the power in the first order spatial mode to the second output waveguide.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: October 25, 2022
    Assignee: Rockley Photonics Limited
    Inventors: Yangyang Liu, Andrea Trita
  • Patent number: 11474302
    Abstract: A fiber optic adapter assembly is provided with a floating adapter module. The adapter assembly includes a housing, an adapter module, and a single biasing member disposed in the housing and concentrically aligned with the adapter module. The single biasing member can bias the adapter module in a direction toward an end of the housing and be compressible in the opposite direction toward the other end of the housing.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: October 18, 2022
    Assignee: COMMSCOPE CONNECTIVITY BELGIUM BVBA
    Inventor: Philippe Coenegracht
  • Patent number: 11460655
    Abstract: A cable entry sealing system includes a housing having a first housing end and a second housing end; a sealing and shielding member having a portion insertable into the housing, the sealing and shielding member comprising: a plug portion and a medial sealing portion, extending from the plug portion. The medial sealing portion includes a first raised edge, a lip sealing portion extending outwardly from the first raised edge, and a medial body section having a second raised edge. The system further includes an end sealing portion, extending from the medial portion, and at least one compression member coupled to the end sealing portion. The sealing and shielding member is configured to prevent contamination into the cable entry sealing system and distortion of the at least one compression member.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 4, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Christophe Joseph Marie Corbille, Michel Teva Menguy
  • Patent number: 11454756
    Abstract: A plastic optical fiber for a medical device lighting decreases the cost of a lens and simplify the design of a lighting apparatus, wherein the plastic optical fiber for a medical device includes a core composed of a (co)polymer containing methyl methacrylate as a main component and is characterized by including a cladding material composed of a copolymer having a fluorine weight composition ratio of 60 to 74%, and by having a theoretical numerical aperture, NA, of 0.48 to 0.65 and, thus, the plastic optical fiber has a high numerical aperture and also has excellent translucency and flexibility.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 27, 2022
    Assignee: Toray Industries, Inc.
    Inventors: Hideki Kojima, Hironobu Maeda, Shinji Sato, Hidekazu Kunieda, Satoshi Matsuba
  • Patent number: 11454760
    Abstract: A method for manufacturing an optical fiber, the method including: a stripping step of partially stripping a coating layer of the optical fiber; a splicing step of fusion-splicing an exposed end surface of a glass fiber; and a recoating step of recoating a protective resin covering a stripped portion of the coating layer and an exposed portion of the glass fiber, in which the stripping step is a step of irradiating the coating layer with a laser light to strip the coating layer.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: September 27, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Suguru Takasaki, Hiroshi Kohda