Patents Examined by Minsun Oh
  • Patent number: 7277461
    Abstract: A vertical cavity surface emitting laser having a dielectric gain guide. The gain guide may provide current confinement, device isolation and possibly optical confinement. The first mirror and an active region may be grown. A pattern may be placed on or near the active region. A dielectric material may be deposited on the pattern and the pattern may be removed resulting in a gain guide. Then a top mirror may be grown on the gain guide. This structure with the dielectric gain guide may have specific characteristics and/or additional features.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: October 2, 2007
    Assignee: Finisar Corporation
    Inventors: Jae-Hyun Ryou, Gyoungwon Park
  • Patent number: 7277464
    Abstract: The present invention relates to a fluorine gas discharge laser system and control of replenishment of fluorine gas as the gas discharge laser operates and consumes fluorine.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: October 2, 2007
    Assignee: Cymer, Inc.
    Inventors: John A. Rule, Paolo Zambon, Tom A. Watson, Omez S. Mesina, Weijie Zheng
  • Patent number: 7277460
    Abstract: Optical filaments are formed controllably in a gaseous medium such as air. A phase plate introducing a phase discontinuity or other localized optical inhomogeneity is introduced into the path of the pulsed high-power laser beam that forms the optical filaments in the medium. The locations and characteristics of the phase discontinuities or singularities are selected to control the number and locations of the optical filaments.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: October 2, 2007
    Assignee: Ionatron
    Inventors: Stephen William McCahon, Paul B. Lundquist
  • Patent number: 7277463
    Abstract: Optoelectronic device including integrated light emitting device and photodiode. The optoelectronic device includes a light emitting, device such as a vertical cavity surface emitting laser (VCSEL) or resonant cavity light emitting diode (RCLED). A photodiode is also included in the optoelectronic device. Between the light emitting device and the photodiode is a transition region. At least part of the transition region is shorted. A metal contact provides a contact to both the light emitting device and the photodiode.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: October 2, 2007
    Assignee: FInisar Corporation
    Inventors: James Guenter, James R. Biard
  • Patent number: 7277462
    Abstract: A tuneable laser assembly includes a substrate having formed thereon a plurality of tuneable lasers, waveguides, an optical coupler and an optical amplifier. The lasers have active sections and distributed Bragg reflector (DBR) tuning sections and are characterised by respective emission wavelengths and tuning ranges such that the laser assembly can be tuned over a quasi-continuous predetermined wavelength range. The DBR tuning sections have a length in the range of about 150-200 um, are of the same optical waveguide of the waveguides, a grating strength (KL) less than about 0,5 and a high reflective (HR) coated back facet enhancing the external quantum efficiency from each said tuning sections. The active sections have a length in the range of about 250-300 um comprised of a high-gain/low-loss multi quantum well (MQW) material. The lasers have a total DBR array length of about 500 um.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: October 2, 2007
    Assignee: Avago Technologies Fiber (Singapore) Pte. Ltd.
    Inventors: Roberto Paoletti, Michele Agresti, Marco Vallone
  • Patent number: 7277465
    Abstract: In a refractive index coupling distributed semiconductor laser having a ?/2-phase-shift distributed feedback structure with a diffraction grating having a refractive index coupling property on an active layer, when viewed in a light distributed feedback direction, a value of (duty of a high refractive index portion)/(duty of a low refractive index portion) of a diffraction grating in a rear end face region is larger than that of a diffraction grating in a front end face region. In this manner, a coupling coefficient ?2 in a front end face region of a conventional semiconductor laser is smaller than a coupling coefficient ?1 in a rear end face region and is larger than 100 cm?1.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: October 2, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshitaka Aoyagi, Satoshi Shirai
  • Patent number: 7274723
    Abstract: Conventionally, a laser beam is amplified by making a single pass through an amplifier but the laser beam emitted from the oscillator generally has low energy, so the energy stored in the amplifier cannot be fully extracted and only low laser output power and overall efficiency result. According to the method of the invention for amplifying a solid-state laser, the laser beam is passed through the amplifier multiple times and with spatial uniformity so as to achieve efficient extraction of the energy stored in the amplifier and the thermally induced distortion of the laser beam can be compensated by the single amplifier.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: September 25, 2007
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Hiromitsu Kiriyama, Koichi Yamakawa
  • Patent number: 7274721
    Abstract: A monolithic multi-wavelength laser device according to the present invention comprises a substrate, a first-wavelength lasing part having a ridge portion and a second-wavelength lasing part having a ridge portion, while each of the first-wavelength lasing part and the second-wavelength lasing part includes current blocking layers consisting of semiconductor thin films covering the side surfaces of the ridge portion and extending toward at least partial regions of a plane linked with the bottom surface of the ridge portion and an insulation layer, covering the current blocking layers, consisting of an insulating dielectric thin film made of a material having a lower refractive index than the current blocking layers.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: September 25, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masaki Tatsumi
  • Patent number: 7274722
    Abstract: CO2 slab laser having a gas-filled tubular housing, sealed off at both ends by end pieces, which accommodates two overlapping electrodes extending into the tubular housing and mirrors arranged in the region of the electrodes, where each of the two end pieces holds an electrode, the mirrors are arranged stationary relative to the electrodes and the electrodes, jointly with the mirrors, are adjustable relative to one another.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: September 25, 2007
    Inventor: Norbert Taufenbach
  • Patent number: 7273281
    Abstract: A method and apparatus are provided to compensate for variations in the alignment of a plurality of lasers 102, 104, 106. A controller 142 varies the time at which the lasers 102, 104, 106 are energized so that the laser light emitted therefrom is reflected from a scanning mirror 118 at varying times so that each of the beams of light is reflected along a substantially common path and delivered to a substantially common point.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 25, 2007
    Assignee: Symbol Technologies, Inc.
    Inventors: Miklos Stern, Paul Dvorkis, Narayan Nambudiri, Carl Wittenberg, Chinh Tan, Ron Goldman, Dmitriy Yavid, Frederick F. Wood
  • Patent number: 7274720
    Abstract: In a semiconductor laser element, a lower cladding layer, a lower optical waveguide layer, an InGaAs compressive-strain quantum-well active layer, an upper optical waveguide layer, and an upper cladding layer are formed in this order in a stripe-shaped region on a substrate. A current-blocking layer is formed on both sides of the compressive-strain quantum-well active layer so that the compressive-strain quantum-well active layer is sandwiched between two portions of the current-blocking layer, and trenches extending along the direction of the laser resonator are formed through the current-blocking layer. Instead of providing the trenches, the widths of the layers formed above the substrate are reduced so as to form a ridge structure.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: September 25, 2007
    Assignee: Fujifilm Corporation
    Inventor: Hideki Asano
  • Patent number: 7272160
    Abstract: A single-frequency Brillouin fiber ring laser with extremely narrow linewidth comprises a single-frequency narrow-linewidth rapid-tunable pump laser, a temperature-controlled acoustically-damped package for Brillouin fiber ring laser cavity, and an auto-tracking feedback electronic loop with novel configuration for active stabilization. The Pound-Drever-Hall frequency-locking technique is employed to keep pump laser frequency in resonance with one of the Brillouin fiber ring cavity modes. Instead of changing cavity length of Brillouin fiber ring laser, the pump laser frequency is rapidly tuned in the auto-tracking feedback electronic loop. This enables extremely narrow linewidth radiation emitted from a Brillouin fiber ring laser without stretching the fiber ring.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 18, 2007
    Assignee: NP Photonics, Inc
    Inventors: Jihong Geng, Shibin Jiang
  • Patent number: 7269190
    Abstract: An erbium-doped (Er-doped) superfluorescent fiber source (SFS) has an enhanced mean wavelength stability. A method determines an estimated mean wavelength of a SFS. The method includes providing an Er-doped SFS having an actual mean wavelength. The method further includes configuring the SFS such that the actual mean wavelength has a dependence on the temperature of the EDF. The method further includes obtaining the dependence of the actual mean wavelength on the temperature of the EDF. The method further includes measuring the temperature of the EDF. The method further includes calculating the estimated mean wavelength using the measured temperature of the EDF and the dependence of the actual mean wavelength on the temperature of the EDF.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: September 11, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hee Gap Park, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 7269194
    Abstract: A method and apparatus for driving lasers. An example laser driving system includes a laser current controller for providing a modulation signal and a bias signal. The modulation signal and bias signal is used by a plurality of high-speed current drivers that accept the modulation signal and the bias signal and produce a plurality of laser drive signals. The example system also has a disable input that disconnects power from a high-speed current driver when the high-speed current driver is not in use. The exemplary system develops the modulation and bias signals by feeding back a signal developed from detection of laser light from one of the lasers driven by the system. The laser may be a data laser or a control laser that is modulated by a signal having a lower frequency than the data lasers. If a control laser is used then the photodetector circuit used for feedback can have a lower frequency response because of the lower frequency of the control laser signal.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: September 11, 2007
    Assignee: Optical Communication Products, Inc.
    Inventors: Nelson Diaz, Michael Dudek, Carl Embry
  • Patent number: 7265439
    Abstract: An inventive transceiver includes a transmitter for outputting plural beams of electromagnetic energy. In the illustrative embodiment, the transmitter is a vertical cavity surface emitting laser. Plural beams output by the transmitter are directed to the detector by an array of diffractive optical elements. In the preferred embodiment, the optical elements are fabricated by imprinting a pattern on a high temperature film substrate using an ultraviolet epoxy. The use of a vertical cavity surface emitting laser allows for high data rates while the diffractive optical arrangement allows for a compact design.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: September 4, 2007
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Melinda W. Wu, Carl Embry, Yman Teng, Ron Kaneshiro
  • Patent number: 7266135
    Abstract: In one exemplary embodiment of the invention, a method is employed that is directed to forming a resonant reflector on an optoelectronic device, such as a semiconductor laser for example. The exemplary method involves depositing a first material layer on the top layer of the optoelectronic device, where the first material layer having a refractive index and a thickness of about an odd multiple of a quarter of a wavelength to which the optoelectronic device is tuned. A patterned region is then created that extends at least partially into the first material layer. Selected patterned regions are at least partially filled with a second material that has a refractive index that is greater than the refractive index of the first material layer. Finally, a third layer, having a refractive index greater than the refractive index of the first material layer, is deposited immediately adjacent the first material layer.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: September 4, 2007
    Assignee: Finisar Corporation
    Inventors: Robert A. Morgan, Eva M. Strzelecki
  • Patent number: 7266136
    Abstract: A temperature compensation system comprises a laser driver having a first potentiometer, the laser driver configured to provide a first signal to a laser based on a value of the first potentiometer and an optical communication analyzer configured to provide a second signal indicative of a first output parameter of the laser. The temperature compensation system comprises a computer system configured to drive the first signal and receive the second signal and determine a first updated value for the first potentiometer to obtain a first desired laser output parameter value based on a first known value of the first potentiometer, the second signal, and the first desired laser output parameter value.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: September 4, 2007
    Assignee: Finisar Corporation
    Inventors: Laszlo Varga, Nelson Diaz, Robert Jones
  • Patent number: 7263115
    Abstract: A semiconductor device comprises an active region (4), a cladding layer (5,7), and a saturable absorbing layer (6) disposed within the cladding layer. The saturable absorbing layer comprises at least one portion (11a) that is absorbing for light emitted by the active region and comprises at least portion (11b) that is not absorbing for light emitted by the active region. The fabrication method of the invention enables the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) to produced after the device structure has been fabricated. This allows the degree of overlap between the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) and the optical mode of the laser to be altered after the device has been grown.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: August 28, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Rakesh Roshan, Brendan Poole, Stewart Edward Hooper, Jonathan Heffernan
  • Patent number: 7263116
    Abstract: A slab laser includes two elongated electrodes arranged spaced apart and face-to-face. Either one or two slabs of a solid dielectric material extend along the length of the electrodes between the electrodes. A discharge gap is formed either between one of the electrodes and one dielectric slab, or between two dielectric slabs. The discharge gap is filled with lasing gas. A pair of mirrors is configured and arranged to define a laser resonator extending through the gap. An RF potential is applied across the electrodes creating a gas discharge in the gap, and causing laser radiation to circulate in the resonator. Inserting dielectric material between the electrodes increases the resistance-capacitance (RC) time constant of the discharge structure compared with the RC time constant in the absence of dielectric material.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: August 28, 2007
    Assignee: Coherent, Inc.
    Inventors: Christian J. Shackleton, Phillip J. Gardner, Anthony J. DeMaria, Vernon Seguin, John T. Kennedy
  • Patent number: 7260121
    Abstract: Driver for Pockels cells and using this Pockels cell within laser systems The driver i.e. the electrical control of the Pockels cell is modified from the standardly known H-configuration using the switches S1, S2A; S1A, S2 A by adding at least one more switch (S2B; S1B; S2B). This switch can either replace the usually used recharging resistors (R2) or can be placed to these in parallel. It is also possible to use an arrangement using 4 switches (S1A, S2A, S1B, S2B) and no recharging resistors at all. Using such a driver with a Pockels cell pulses can be selected in laser systems more efficiently. Pulse sequences with well defined widths and spacing can be produced for certain application.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: August 21, 2007
    Inventors: Thorald Horst Bergmann, Ralf Knappe