Patents Examined by Muhammad S Siddiquee
  • Patent number: 11050057
    Abstract: Provided are an electrode active material for a secondary battery containing a first electrode active material and a second electrode active material, in which the first electrode active material expands during charging and contracts during discharging, the second electrode active material contracts during charging and expands during discharging, some of particles constituting the first electrode active material and some of particles constituting the second electrode active material are in contact with each other, and an interface in which the particles constituting the first active material and the particles constituting the second active material are in contact with each other forms a solid solution to form a crystal portion, a solid electrolyte composition, an electrode sheet for an all-solid state secondary battery, and an all-solid state secondary battery for which the electrode active material for a secondary battery is used, and methods for manufacturing the electrode active material for a secondary ba
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: June 29, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Hiroshi Kaga, Hiroaki Mochizuki
  • Patent number: 11031652
    Abstract: A battery and a mobile terminal relate to the field of terminal technologies, where the battery is securely bonded inside a rear housing. The battery includes a battery body and a package case. The battery body is accommodated inside the package case. The package case includes a first surface and a second surface opposite to the first surface. The first surface and the rear housing are attached and secured. The second surface has a tear structure. The package case is configured to torn open by tearing the tear structure to remove the battery body. In this way, when the battery is removed from the rear housing, the tear structure may be torn to remove the battery, thereby preventing deformations, wrinkles, or bulges in an aluminum plastic film on the battery.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 8, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Junjie Han, Jiong Chen
  • Patent number: 11024877
    Abstract: Provided herein are apparatus, systems, and methods of powering electric vehicles. A battery pack can be disposed in an electric vehicle to power the electric vehicle. The apparatus can include a battery cell. A battery cell can have a housing that defines a cavity. The battery cell can have a solid electrolyte. The electrolyte can be arranged within the cavity. The battery cell can have a cathode disposed within the cavity along a first side of the electrolyte. The battery cell can have a functional layer disposed within the cavity along a second side of the electrolyte. A first side of the functional layer can be in contact with a second side of the electrolyte. The functional layer can form an alloy with lithium material received via the electrolyte. The battery cell can have a scaffold layer disposed within the cavity along a second side of the functional layer.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 1, 2021
    Assignee: TeraWatt Technology Inc.
    Inventors: Ken Ogata, Hiroshi Imoto
  • Patent number: 11014074
    Abstract: A battery electrode, a composition for a catalyst layer of a battery electrode, and a battery having excellent characteristics at low cost. The battery electrode includes a catalyst layer containing a non-platinum catalyst and platinum particles not being carried on the non-platinum catalyst, wherein a content of the platinum particles per unit area of the battery electrode is 0.0010 mg/cm2 or more and 0.1200 mg/cm2 or less.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 25, 2021
    Assignee: NISSHINBO HOLDINGS INC.
    Inventors: Takeaki Kishimoto, Chihiro Fujii, Miki Nakayama
  • Patent number: 11005131
    Abstract: The present disclosure relates to the technical field of assembly of a battery pack, and particularly, to a battery pack. The battery pack includes a housing. A plurality of cells is arranged in interior of the housing. A structural adhesive is filled between a bottom of the housing and the plurality of cells, and the plurality of cells is adhered to the housing through the structural adhesive. In the battery pack, the cells are arranged in the interior of the housing, and the housing is adhered to the cells through the structural adhesive.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 11, 2021
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Linggang Zhou, Derong Wang, Yanhuo Xiang
  • Patent number: 11005090
    Abstract: This non-aqueous electrolyte secondary battery is provided with: a wound electrode body which comprises a positive electrode, a negative electrode and a separator, and wherein the positive electrode and the negative electrode are wound into a roll, with the separator being interposed therebetween; and a non-aqueous electrolyte. The negative electrode comprises a negative electrode collector and a negative electrode mixture layer that is formed on the negative electrode collector. The negative electrode mixture layer contains graphite, a carbon material that has a BET specific surface area of 10 m2/g or more, said BET specific surface area being larger than that of the graphite, and a hydrophobic binder. The coverage of the particle surfaces of the carbon material by the binder is higher than the coverage of the particle surfaces of the graphite by the binder.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: May 11, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kouhei Tuduki, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Patent number: 10991977
    Abstract: A method of manufacturing a high-ion conductive sulfide-based solid electrolyte using dissolution-precipitation includes preparing a composite solvent including a first solvent including a cyano group and a second solvent having a polarity index of less than 4, introducing a raw material including lithium sulfide (Li2S) and phosphorus pentasulfide (P2S5) into the composite solvent, and stirring the raw material to obtain a sulfide precipitate.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: April 27, 2021
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, Industry-University Cooperation Foundation Hanyang University
    Inventors: Ju Yeong Seong, In Woo Song, Hong Seok Min, Yong Jun Jang, Yun Sung Kim, Dong Wook Shin, Sun Ho Choi, Ji U Ann, Ji Yae Do, Seung Woo Lim
  • Patent number: 10992003
    Abstract: An electrochemical apparatus includes a catholyte, an anolyte, and a separator disposed between the catholyte and the anolyte. The catholyte includes metal salt dissolved in water, thereby providing at least one metal ion. The anolyte includes a polysulfide solution. The separator is permeable to the at least one metal ion. During a charging process of the electrochemical apparatus, oxygen is generated in the catholyte, the polysulfide in the polysulfide solution undergoes a reduction reaction in the anolyte, and the at least one metal ion moves from the catholyte to the anolyte. During a discharging process of the apparatus, the oxygen is consumed in the catholyte, the polysulfide oxidizes in the anolyte, and the at least one metal ion moves from the anolyte to the catholyte.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: April 27, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Liang Su, Zheng Li, Yet-Ming Chiang, Menghsuan Sam Pan
  • Patent number: 10991975
    Abstract: Disclosed is a method of manufacturing a solid electrolyte for an all-solid battery. The method may include preparing a solvent admixture comprising a first polar organic solvent containing a cyano group and a second polar organic solvent containing a hydroxyl group, preparing an electrolyte admixture by dissolving Li2S, P2S5 and LiCl in the solvent admixture, and preparing a solid electrolyte by stirring the electrolyte admixture. The method may further include precipitating the solid electrolyte by evaporating the solvent admixture, and heat treating the precipitated solid electrolyte. In particular, the solvent admixture may include the second polar organic solvent in an amount of about 0.01 to 0.03 wt % based on the total weight of the first polar organic solvent.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: April 27, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation, IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Ju Yeong Seong, Hong Seok Min, Yong Jun Jang, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Sun Ho Choi, Jong Yeob Park
  • Patent number: 10985358
    Abstract: Battery systems according to embodiments of the present technology may include a battery cell having an electrode tab extending from an edge of a first side of the battery cell. The battery system may also include a module electrically coupled with the battery cell. The module may include a mold defining a recess along a first side of the module. The module may also include a conductive tab extending from the first side of the module. The conductive tab may be coupled with the electrode tab. The electrode tab may be characterized by a curvature along a length of the electrode tab, and a distal end of the electrode tab may be positioned within the recess defined by the mold.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: April 20, 2021
    Assignee: Apple Inc.
    Inventors: Depeng Wang, Thai T. Ton, Nathan J. Bohney, George V. Anastas
  • Patent number: 10978767
    Abstract: An embodiment of the present invention provides, as a nonaqueous electrolyte secondary battery separator excellent in cycle characteristic, a nonaqueous electrolyte secondary battery separator including a polyolefin porous film, wherein a ratio of a displacement amount of the nonaqueous electrolyte secondary battery separator at a 10th loading-unloading cycle to a displacement amount of the nonaqueous electrolyte secondary battery separator at a 50th loading-unloading cycle is in a range of 100% to 130%.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: April 13, 2021
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kosuke Kurakane
  • Patent number: 10964959
    Abstract: A seal (34) for a fuel cell (10), which includes multiple bipolar plates (13) and at least one membrane electrode assembly (12), the seal (34) having a seal body (40) surrounding a free inner chamber (42) is provided. It is provided that at least two flow barriers (46) pointing into the inner chamber (42) are formed as a single piece with the seal body (40), the flow barriers (46) being situated at a distance from the seal body (40) by at least one connecting element (48).
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 30, 2021
    Assignees: Volkswagen AG, Audi AG
    Inventors: Ian Stewart, Darcy McGowan
  • Patent number: 10964922
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: March 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Del Charles Brooks, III, Christopher Hallmark, John Duggan, Jeffrey Armstrong
  • Patent number: 10964921
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Joseph Beauvais, Russell Bruch, Jeffrey Armstrong
  • Patent number: 10950878
    Abstract: A humidifier for a fuel cell includes a body, first and second humidifying spaces formed inside the body, an exhaust gas inlet and an exhaust gas outlet for supplying exhaust gas released from the fuel cell stack into the first and second humidifying spaces, a passing space formed inside the body and directly or indirectly communicated with the second humidifying space and the fuel cell stack. The inflow gas flows into the passing space from the first humidifying space. A valve is installed in the passing space to allow the inflow gas introduced into the passing space to flow into the fuel cell stack with or without passing through or to allow some of the inflow gas introduced into the passing space to flow into the fuel cell stack passing through the second humidifying space and others of the inflow gas introduced into the fuel cell stack without passing through the second humidifying space.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: March 16, 2021
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Sae Han Oh, Hyun Yoo Kim
  • Patent number: 10950837
    Abstract: Provided are methods of preparing a separator/anode assembly for use in an electric current producing cell, wherein the assembly comprises an anode current collector layer interposed between a first anode layer and a second anode layer and a porous separator layer on the side of the first anode layer opposite to the anode current collector layer, wherein the first anode layer is coated directly on the separator layer.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 16, 2021
    Assignee: Optodot Corporation
    Inventor: Steven A. Carlson
  • Patent number: 10944102
    Abstract: A process for solution-based formation of a nanostructured, carbon-coated, inorganic composite includes selecting a supply of inorganic material in a solution, selecting a supply of a carbon-containing solution, and synthesizing the composite by causing the inorganic material to react in the carbon-containing solution. The synthesized composite may be conductive-carbon-coated, and may be for electrochemical applications such as battery cathodes and anodes. The selecting step may involve varying relative amounts of polar fluid, microblender and water components to synthesize a crystalline inorganic composite. There may be a step of retaining and reusing the supply of carbon-containing solution that remains after the synthesizing, and testing the supply of carbon-containing solution that remains to determine whether it can be used again.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: March 9, 2021
    Assignee: Sylvatex, Inc.
    Inventor: Ramez Elgammal
  • Patent number: 10938047
    Abstract: A fuel cell device includes an electrochemical cell, an oxidizer gas supply portion, and a contaminant trap portion. An oxidizer gas supply portion has an oxidizer gas supply port for supplying an oxidizer gas to the cathode. A contaminant trap portion is disposed on a portion of the cathode on the side with the oxidizer gas supply port and exhibits oxygen ion conductivity and electron conductivity.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 2, 2021
    Inventors: Risako Ito, Makoto Ohmori
  • Patent number: 10930912
    Abstract: Provided is a composition for a non-aqueous secondary battery functional layer capable of forming a functional layer for a non-aqueous secondary battery that has excellent adhesiveness after immersion in electrolyte solution and can cause a non-aqueous secondary battery to display excellent cycle characteristics and output characteristics. The composition for a non-aqueous secondary battery functional layer contains organic particles and a binder for a functional layer. The organic particles have an electrolyte solution elution amount of at least 0.001 mass % and not more than 5.0 mass %.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: February 23, 2021
    Assignee: ZEON CORPORATION
    Inventors: Kenji Arai, Keiichiro Tanaka, Kazuki Asai
  • Patent number: 10930932
    Abstract: The present disclosure provides a positive electrode plate and a battery, the positive electrode plate comprises a positive current collector and a positive film, the positive film is provided on least one surface of the positive current collector and comprises a positive active material, the positive active material comprises a layered lithium-containing compound, and an OI value of the positive film represented by COI is less than or equal to 150. The positive electrode plate of the present disclosure has smaller swelling and excellent dynamics performance, and the battery of the present disclosure has high safety performance, excellent dynamics performance and long cycle life at the same time.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: February 23, 2021
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Yanyun Tan, Fuping Luo, Shengwei Wang, Xinxin Du, Qiaoge Wang