Patents Examined by Nazmun Nahar Shams
-
Patent number: 11772161Abstract: Methods and apparatuses for in situ synthesis of SiC, CMCs, and MMCs are disclosed, comprising: providing an apparatus having: an electromagnetic energy source; an autofocusing scanner; a powder system for SiC and one or more powders; a powder delivery system; a shielding gas comprising argon and/or nitrogen; and a computer coupled to and configured to control the energy source, scanner, powder system, and powder delivery system to deposit layers of the sample; programming the computer with specifications of the sample; using the computer to control electromagnetic radiation, mixing ratio, and powder deposition parameters based on the specifications of the sample; and using the autofocusing scanner to focus and scan the electromagnetic radiation onto the sample while the powders are concurrently deposited by the powder delivery system onto the sample to create a melting pool to deposit one or more layers onto the sample. Other embodiments are described and claimed.Type: GrantFiled: January 7, 2020Date of Patent: October 3, 2023Assignee: PolarOnyx, Inc.Inventor: Jian Liu
-
Patent number: 11753696Abstract: A method for controlling deformation of a large-scale crankshaft comprising detecting and recording stress value(s) of part(s) to be regulated by the crankshaft; fixing the crankshaft on a tool to couple transmitting ends of high-energy acoustic beam transducers with the part(s) to be regulated; turning on the high-energy acoustic beam transducers to emit high-energy acoustic beams into the crankshaft, controlling working frequencies of the high-energy acoustic beam transducers within a range of 10-30 kHz, and setting a predicted regulation and control time according to the stress value(s) of the part(s) to be regulated; and closing the high-energy acoustic beam transducers when the predicted regulation and control time is reached, and taking the crankshaft out of the tool.Type: GrantFiled: June 30, 2021Date of Patent: September 12, 2023Assignee: BEIJING INSTITUTE OF TECHNOLOGYInventors: Chunguang Xu, Yuren Lu, Peng Yin, Peilu Li, Dezhi Li, Shuangyi Li, Wenyuan Song, Zhaowei Miao
-
Patent number: 11739405Abstract: A method of producing an Al—Mg—Si-based aluminum alloy forged product, includes a solution heat treatment step of performing a solution heat treatment for heating the forged product obtained in the forging step at a temperature rising rate of 5.0° C./min or more from 20° C. to 500° C. and holding the forged product at 530° C. to 560° C. for 0.3 hours to 3 hours, a quench treatment step of quenching the forged product in a water tank by bringing an entire surface of the forged product into contact with quenching water within 5 seconds to 60 seconds after the solution heat treatment step for more than 5 minutes and not more than 40 minutes, and an aging treatment step of performing an aging treatment by heating the forged product after the quench treatment step at a temperature of 180° C. to 220° C. for 0.5 hours to 1.5 hours.Type: GrantFiled: March 10, 2021Date of Patent: August 29, 2023Assignee: SHOWA DENKO K.K.Inventor: Takuya Arayama
-
Patent number: 11739404Abstract: An object of the present disclosure is to provide a method for manufacturing an aluminum alloy plastically-processed article, capable of preventing a burning crack from occurring due to processing heat generated during plasticity processing while maintaining a solution-treatment temperature of an aluminum alloy material for ensuring a mechanical strength thereof. A method for manufacturing an aluminum alloy plastically-processed article, includes a step of performing a solution treatment for an aluminum alloy material by heating and maintaining the aluminum alloy material at a solution-treatment temperature, a step of performing plasticity processing for the aluminum alloy material subjected to the solution treatment, and steps of cooling the plastically-processed aluminum alloy material at a time at which the step of the plasticity processing is completed, and aging the cooled aluminum alloy material.Type: GrantFiled: November 17, 2020Date of Patent: August 29, 2023Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, KOBE STEEL, LTD.Inventors: Kazuhiro Suzuki, Takehito Kobayashi, Masayuki Isogawa, Katsuya Yoshida, Chihiro Asai, Masahiro Yamada, Masayuki Hori
-
Patent number: 11731193Abstract: A preparation method of improved sintered neodymium-iron-boron (Nd—Fe—B) casting strips includes the following steps: firstly nucleation assisted alloy particles used for sintered Nd—Fe—B casting strips are prepared, all elements are weighted as follows: 26.68-28% of Pr—Nd, 70-72.5% of Fe and 0.90-1% of B, and a Pr element in two elements of Pr—Nd accounts for 0-30 wt %; the compounded materials are smelted and poured to obtain alloy strips, then the alloy strips are crushed into particles with diameter of 1-10 mm; secondly, Nd—Fe—B casting strips are prepared: the prepared intermediate materials are smelted and melted into molten steel, and then are refined; after the intermediate materials are fully melted, the nucleation assisted alloy particles are added; and after the nucleation assisted alloy particles are added, smelting is performed for 3-15 minutes pouring is performed, and final Nd—Fe—B alloy casting strips are obtained.Type: GrantFiled: June 28, 2021Date of Patent: August 22, 2023Assignee: BAOTOU JINSHAN MAGNETIC MATERIAL CO., LTD.Inventors: Yu Wang, Feng Xia, Caina Sun, Yonghuai Feng, Yanli Li, Jiao Gao, Jixiang Liu
-
Patent number: 11732361Abstract: A method for manufacturing a metal plate, the metal plate including a first surface and a second surface positioned on the opposite side of the first surface, may include a step of rolling a base metal having an iron alloy containing nickel to produce the metal plate. The metal plate may include particles containing as a main component an element other than iron and nickel. In a sample including the first surface and the second surface of the metal plate, the following conditions (1) and (2) regarding the particles may be satisfied: (1) The number of the particles having an equivalent circle diameter of 1 ?m or more is 50 or more and 3000 or less per 1 mm3 in the sample, and (2) The number of the particles having an equivalent circle diameter of 3 ?m or more is 50 or less per 1 mm3 in the sample.Type: GrantFiled: October 14, 2020Date of Patent: August 22, 2023Assignee: Dai Nippon Printing Co., Ltd.Inventors: Hiroki Oka, Chikao Ikenaga, Sachiyo Matsuura, Shogo Endo, Chiaki Hatsuta, Asako Narita
-
Patent number: 11705256Abstract: A neodymium-iron-boron permanent magnet, a preparation method and use thereof are disclosed. The neodymium-iron-boron permanent magnet has a composition represented by formula I: [mHR(1?m) (Pr25Nd75)]x(Fe100-a-b-c-dMaGabIncSnd)100-x-yBy formula I; where a is 0.995-3.493, b is 0.114-0.375, c is 0.028-0.125, d is 0.022-0.100; x is 29.05-30.94, y is 0.866-1.000; m is 0.02-0.05; HR is Dy and/or Tb; M is at least one selected from the group consisting of Co, Cu, Ti, Al, Nb, Zr, Ni, W and Mo.Type: GrantFiled: July 21, 2021Date of Patent: July 18, 2023Assignee: BAOTOU JINSHAN MAGNETIC MATERIAL CO., LTD.Inventors: Feng Xia, Yu Wang, Yanli Li, Yonghuai Feng, Chunguang Liu, Haiyuan Zhang, Jixiang Liu, Manyou Su, Gazhen Liu
-
Patent number: 11692256Abstract: Adding multiple solute elements could create fracture origin through formation of intermetallic compound due to bonding of added elements. While maintaining microstructure for activating non-basal dislocation movement, additive elements not to create fracture origin, but to promote grain boundary sliding are preferably found from among inexpensive and versatile elements. Provided is Mg-based wrought alloy material including two or more among group consisting of Mn, Zr, Bi, and Sn; and Mg and unavoidable constituents, having excellent room-temperature ductility and characterized by having finer crystal grain size in Mg parent phase during room-temperature deformation and in that mean grain size in matrix thereof is 20 ?m or smaller; rate of (?max??bk)/?max (maximum load stress (?max), breaking stress (?bk)) in stress-strain curve obtained by tension-compression test of the wrought material is 0.2 or higher; and resistance against breakage shows 200 kJ or higher.Type: GrantFiled: July 10, 2018Date of Patent: July 4, 2023Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCEInventors: Hidetoshi Somekawa, Yoshiaki Osawa
-
Patent number: 11692273Abstract: A method applies a titanium aluminide alloy on a substrate. The titanium aluminide alloy has a gamma phase proportion of at least 50% based on an overall composition of the titanium aluminide. The method includes: pretreating a surface of the substrate; heat treating titanium aluminide powder particles at a temperature range of 600° C. to 1000° C. to increase the proportion of the gamma phase; cold spraying the heat-treated powder particles onto the substrate or a part of the substrate to form a layer of titanium aluminide; and thermally post-treating the layer of titanium aluminide applied to the substrate.Type: GrantFiled: December 6, 2018Date of Patent: July 4, 2023Assignee: LUFTHANSA TECHNIK AGInventors: Jan Oke Peters, Thomas Maria Gartner, Matthias Mecklenburg, Marcus Willi Rackel, Emine Bakan, Georg Mauer
-
Patent number: 11680304Abstract: A method for reducing and homogenizing residual stress of a metal frame based on elastic acoustic waves that includes determining an injection scheme of elastic acoustic waves based on residual stress distribution and material characteristics of a metal frame, where the injection scheme comprises at least one of the number of injection directions and corresponding injection direction(s), an excitation scheme and working parameters of the elastic acoustic waves; placing the metal frame in a substrate and fixing the inner and outer frames of the metal frame; assembling an excitation device for the elastic acoustic waves based on the determined excitation scheme of the elastic acoustic waves; injecting the acoustic waves into the metal frame from at least one direction; and performing the reduction and homogenization for multiple rounds if the reduction and homogenization of the residual stress of the metal frame in a single round does not meet the requirement.Type: GrantFiled: June 3, 2021Date of Patent: June 20, 2023Assignee: BEIJING INSTITUTE OF TECHNOLOGYInventors: Chunguang Xu, Wenyuan Song, Peilu Li, Yuren Lu, Peng Yin, Shuangyi Li
-
Patent number: 11667983Abstract: A method for manufacturing a metal plate, the metal plate including a first surface and a second surface positioned on the opposite side of the first surface, may include a step of rolling a base metal having an iron alloy containing nickel to produce the metal plate. The metal plate may include particles containing as a main component an element other than iron and nickel. In a sample including the first surface and the second surface of the metal plate, the following conditions (1) and (2) regarding the particles may be satisfied: (1) The number of the particles having an equivalent circle diameter of 1 ?m or more is 50 or more and 3000 or less per 1 mm3 in the sample, and (2) The number of the particles having an equivalent circle diameter of 3 ?m or more is 50 or less per 1 mm3 in the sample.Type: GrantFiled: July 28, 2020Date of Patent: June 6, 2023Assignee: Dai Nippon Printing Co., Ltd.Inventors: Hiroki Oka, Chikao Ikenaga, Sachiyo Matsuura, Shogo Endo, Chiaki Hatsuta, Asako Narita
-
Patent number: 11655529Abstract: A Zr-based amorphous alloy and a manufacturing method thereof, wherein the Zr-based amorphous alloy includes a composition of (ZraHfbCucNidAle)100-XOx, wherein a, b, c, d, e, x are atomic percentages, and 49?a?55, 0.05?b?1, 31?c?38, 3?d?5, 7?e?10.5, and 0.05?x?0.5, wherein based on the volume of the alloy, the Zr-based amorphous alloy is cast into a rod-shaped sample having a diameter of 12-16 mm and a length of 60 mm, an amorphous content of 40%-95%, a strength of above 1800 MPa, and a fracture toughness of higher than 90 KPam1/2.Type: GrantFiled: April 20, 2018Date of Patent: May 23, 2023Inventors: Yi Li, Yinxiao Wang, Hongchuan Cai, Jinjiu Qiu
-
Patent number: 11649536Abstract: The invention relates to a method for producing a stamped component of motor vehicle bodywork or body structure from aluminium alloy comprising the steps of producing a metal sheet or strip of thickness between 1.0 and 3.5 mm in an alloy of composition (% by weight): Si: 0.60-0.85; Fe: 0.05-0.25; Cu: 0.05-0.30; Mn: 0.05-0.30; Mg: 0.50-1.00; Ti: 0.02-0.10; V: 0.00-0.10 with Ti+V?0.10, other elements each <0.05, and <0.15 in total, remainder aluminium, with Mg<?2.67×Si+2.87, dissolving and steeping, pre-tempering, maturation for between 72 hours and 6 months, stamping, tempering at a temperature of around 205° C. with a hold time between 30 and 170 minutes or tempering at a time-temperature equivalent, painting and “bake hardening” of the paints at a temperature of 150 to 190° C. for 15 to 30 minutes.Type: GrantFiled: April 3, 2018Date of Patent: May 16, 2023Assignee: CONSTELLIUM NEUF-BRISACHInventors: Estelle Muller, Olivier Rebuffet, Guillaume Delgrange
-
Patent number: 11643542Abstract: In various embodiments, a water-based binder solution for use in additive manufacturing, includes a thermoplastic binder. The thermoplastic binder includes a first polymer strand having a weight average molecular weight (Mw) of from greater than or equal to 5,000 g/mol to less than or equal to 15,000 g/mol, a second polymer strand having a weight average molecular weight of from greater than or equal to 10,000 g/mol to less than or equal to 50,000 g/mol, and a third polymer strand having a weight average molecular weight of from greater than or equal to 1,000 g/mol to less than or equal to 5,000 g/mol. The binder solution further comprises from greater than or equal to 0.1 wt % to less than or equal to 5 wt % of a non-aqueous solvent having a boiling point of greater than 100° C.Type: GrantFiled: May 21, 2021Date of Patent: May 9, 2023Assignee: General Electric CompanyInventors: Arunkumar Natarajan, William C. Alberts, Vadim Bromberg
-
Patent number: 11634793Abstract: A quasicrystalline material and a semiconductor device to which the quasicrystalline material is applied are disclosed. A quasicrystalline material is based on a quasicrystalline element having one or more axis of symmetry (e.g., a 2-fold axis, a 3-fold axis, a 5-fold axis, or a higher fold axes of symmetry). The quasicrystalline material is capable of phase changes between a quasicrystalline phase and an approximant crystalline phase having a further regular atom arrangement than the quasicrystalline phase. The quasicrystalline material that may be used as a phase change material and may be applied to a phase change layer of a semiconductor device.Type: GrantFiled: January 30, 2020Date of Patent: April 25, 2023Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei UniversityInventors: Eunsung Lee, Duseop Yoon, Joungeun Yoo, Dohyang Kim
-
Patent number: 11608551Abstract: New aluminum alloys are disclosed and generally include 0.6-1.4 wt. % Si, 0.25-0.90 wt. % Mg, wherein the ratio of wt. % Si to wt. % Mg is from 1.05:1 to 5.0:1, 0.25-2.0 wt. % Cu, 0.10-3.5 wt. % Zn, 0.01-1.0 wt. % Fe, up to 0.8 wt. % Mn, up to 0.25 wt. % Cr, up to 0.20 wt. % Zr, up to 0.20 wt. % V, and up to 0.15 wt. % Ti, wherein the total of Fe+Mn+Cr+Zr+V+Ti is not greater than 2.0 wt. %, the balance being aluminum and impurities. The new aluminum alloys may include Q phase precipitates. In some embodiments, the solvus temperature of the Q phase precipitates is not greater than 950° F.Type: GrantFiled: April 14, 2020Date of Patent: March 21, 2023Assignee: Howmet Aerospace Inc.Inventors: Jen C. Lin, Gabriele F. Ciccola, Santosh Prasad, Wei Wen, Raymond J. Kilmer
-
Patent number: 11565322Abstract: A component includes a multiplicity of individual powder particles of Mo, a Mo-based alloy, W or a W-based alloy that have been fused together to give a solid structure by a high-energy beam via an additive manufacturing method. The component has an oxygen content of not more than 0.1 at %. An additive manufacturing method includes producing the powder via the melt phase and providing a carbon content in the region of not less than 0.15 at %. The components are crack-free and have high grain boundary strength.Type: GrantFiled: September 24, 2018Date of Patent: January 31, 2023Assignee: Plansee SEInventors: Gerhard Leichtfried, Bernhard Tabernig
-
Patent number: 11566311Abstract: An aluminum alloy foil has a composition containing 1.0% to 1.8% by mass of Fe, 0.01% to 0.10% by mass of Si, 0.005% to 0.05% by mass of Cu, and Mn regulated to be 0.01% by mass or less, with the balance Al and incidental impurities, wherein with regard to crystal grains surrounded by high inclination angle grain boundaries which are grain boundaries having a misorientation of 150 or more in analysis of crystal orientation per unit area using electron backscatter diffraction, an average grain size of the crystal grains is 5 m or less, and a maximum grain size of the crystal grains/the average grain size of the crystal grains <3.0, and when a thickness of the foil is 30 m, elongations in directions making 15, 450 and 90 with respect to a rolling direction are 25% or more respectively.Type: GrantFiled: September 6, 2017Date of Patent: January 31, 2023Assignee: MITSUBISHI ALUMINUM CO., LTD.Inventor: Takashi Suzuki
-
Patent number: 11555224Abstract: A process of producing a partially hardened metallic formed part comprises: heating a semi-finished product of hardenable hot-formable steel sheet to a hardening temperature; hot-forming the heated semi-finished product in a combined hot-forming cutting device into a three-dimensional formed part; cutting the formed part in the combined hot-forming cutting device; pressure-hardening the formed part in the hot-forming cutting device into a hardened formed part such that a first partial region is hardened by rapid cooling and that a second partial region of the formed part is heat-treated so as to comprise a greater ductility and a lower strength than the first partial region, wherein the operation of cutting the formed part takes place at least in one of the first and second partial region. A combined hot-forming cutting device can be used to produce a metallic formed part.Type: GrantFiled: January 13, 2020Date of Patent: January 17, 2023Assignee: WEBA WERKZEUGBAU BETRIEBS GMBHInventors: Johannes Graf, Klaus Weber
-
Patent number: 11549164Abstract: Provided is a hydrogen storage alloy including a ternary alloy of titanium (Ti), iron (Fe), and vanadium (V), wherein V sites in the ternary alloy correspond to some of Ti sites in a binary TiFe alloy including Ti and Fe, and some of Fe sites in the binary TiFe alloy.Type: GrantFiled: December 22, 2020Date of Patent: January 10, 2023Assignee: Korea Institute of Science and TechnologyInventors: Young-Su Lee, Young Whan Cho, Jae-Hyeok Shim, Jin-Yoo Suh, Jihyun Hong, Jee Yun Jung, June Hyung Kim, Mohammad Faisal