Patents Examined by Nazra Nur Waheed
  • Patent number: 11668793
    Abstract: The disclosure relates to a radar system comprising multiple synchronized transceivers.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: June 6, 2023
    Assignee: NXP USA, INC.
    Inventors: Gustavo Adolfo Guarin Aristizabal, Arnaud Sion, Ryan Haoyun Wu
  • Patent number: 11668795
    Abstract: A radar system includes a transmitting element adapted to transmit a radar signal, a receiving element adapted to receive a reflected signal of the radar signal being transmitted by the transmitting element, and a radome covering the transmitting element and the receiving element and having an inner surface and an outer surface. The inner surface of the radome faces the transmitting element and the receiving element. The radome comprises a recess being located at the inner surface.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: June 6, 2023
    Assignee: APTIV TECHNOLOGIES LIMITED
    Inventors: Armin Talai, Andrzej Samulak, Leonardi Roberto
  • Patent number: 11668814
    Abstract: A computer-implemented method for determining an initial ego-pose for initialization of self-localization includes providing a plurality of particles in a map; grouping the particles in a plurality of clusters, each cluster comprising a respective subset of the plurality of particles; during particle filtering, injecting particles based on the plurality of clusters; and determining an initial ego-pose based on the particle filtering.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 6, 2023
    Assignee: APTIV TECHNOLOGIES LIMITED
    Inventors: Ahmad Pishehvari, Stephanie Lessmann
  • Patent number: 11668816
    Abstract: An installation structure for a vicinity information detection sensor includes the vicinity information detection sensor and a vibration absorbing member. The vicinity information detection sensor includes a detector attached to a vehicle inner side of an outer panel of a vehicle body and configured to radiate electromagnetic waves that function as radar waves that detect vicinity information of a vehicle, and a motor provided in the detector and configured to change a radiation direction of the electromagnetic waves. The vibration absorbing member is placed between the outer panel and the vicinity information detection sensor.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: June 6, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shuichi Aso
  • Patent number: 11662425
    Abstract: A mechanism is provided by which a radar image can be generated using mmWave transmissions from 5G-NR type base station antenna arrays. Base stations in 5G-NR use a beam searching sequence utilizing a defined synchronization signal burst (SSB) during their communication initialization with client devices. Embodiments utilize these SSB signals as a radar “chirp” to build a radar image of the base station surrounding in parallel with the typical 5G-NR communication initialization. Antennas on the base station can receive the reflected signals to define the radar image, in conjunction with correlation and time-management logic to properly associate received reflected signals with original transmitted signals. Such information can be processed by a synthetic aperture radar processing logic to form the radar image.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: May 30, 2023
    Assignee: NXP USA, Inc.
    Inventors: Wim Joseph Rouwet, Andrei Alexandru Enescu, Samuel Kerhuel
  • Patent number: 11656353
    Abstract: A system is configured to receive synthetic aperture radar (SAR) backscatter signatures of a geographical area including the object of interest from a SAR device. The system also extracts feature vectors from the SAR backscatter signature based on the intensity values of the SAR backscatter signature. The system inputs the one or more feature vectors into a neural network model. The system receives, as output from the neural network model, coordinate values indicating one or more visual features of the object of interest. Using these coordinate values, the system determines one or more measurements of the object of interest.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: May 23, 2023
    Assignee: Orbital Insight, Inc.
    Inventors: Xin Li, Matthew Dunseth Wood
  • Patent number: 11656333
    Abstract: In accordance with an embodiment, a method of recognizing a biological target includes performing radar measurements for a plurality of sites on the biological target using a millimeter-wave radar sensor, producing a target data set for the plurality of sites based on the radar measurements, extracting features from the target data set, comparing the extracted features to stored features, and determining whether the extracted features match the stored features based on the comparing.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: May 23, 2023
    Assignee: Infineon Technologies AG
    Inventors: Saverio Trotta, Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Avik Santra
  • Patent number: 11650303
    Abstract: A radar sensor in a motor vehicle has at least one antenna arrangement for emitting and receiving radar signals and a processing device for evaluating received radar signals. The antenna arrangement is controlled to simultaneously emit and receive radar signals both in a far frequency range and in a near frequency range, where the bandwidth of the near frequency range is greater than that of the far frequency range. The received radar signals of the near frequency range are evaluated as radar data of a higher distance resolution and received radar signals of the far frequency range are evaluated as radar data of a lower distance resolution.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: May 16, 2023
    Assignee: AUDI AG
    Inventor: Niels Koch
  • Patent number: 11650308
    Abstract: A radar system, comprising: a receive antenna configured to receive a receive signal reflected from a bullet, the receive signal exhibiting a Doppler shift according to the motion of the bullet; and a detector implementing a set of matched filters each configured to determine a measure of correlation between the Doppler shift of the receive signal and one of a set of pre-stored Doppler shifts, wherein each of the pre-stored Doppler shifts respectively represents the Doppler shift of a bullet passing the antenna at a different speed or a distance of a point of closest approach.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: May 16, 2023
    Assignee: SRC, INC.
    Inventors: John C. Dougherty, Robert E. Hiemenz
  • Patent number: 11650305
    Abstract: A vehicle radar system (3) including a control unit arrangement (8) and at least one radar sensor arrangement (4) arranged to transmit signals (6) and receive reflected signals (7). The vehicle radar system (3) acquires a plurality of measured radar detections (10, 11, 12, 13) at different times. The control unit arrangement (8) engages a tracking algorithm using the present measured radar detections (10, 11, 12, 13) as input such that at least one track is initialized. For each track, the control unit arrangement (8) calculates a calculated previous radar detection (14) that precedes the present measured radar detections (10, 11, 12, 13), and to re-initialize the tracking algorithm using the present measured radar detections (10, 11, 12, 13) in combination with the calculated previous radar detection (14).
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: May 16, 2023
    Assignee: VEONEER SWEDEN AB
    Inventor: Sebastian Marsch
  • Patent number: 11635489
    Abstract: A method for the use in a radar system is described herein. In accordance with one embodiment, the method includes providing a local oscillator signal to an RF output channel of a radar system. The RF output channel is configured to generate, in an enabled state, an RF output signal based on the local oscillator signal. The method further includes determining a first measurement signal based on the local oscillator signal and a first representation of the RF output signal, while the RF output channel is disabled, and thus the first measurement signal represents crosstalk. Further, the method includes determining a second measurement signal based on the local oscillator signal and a second representation of the RF output signal while the RF output channel is enabled. A phase value associated with the RF output channel is determined based on the first measurement signal and the second measurement signal.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: April 25, 2023
    Assignee: Infineon Technologies AG
    Inventors: Vincenzo Fiore, Werner Arriola, Rene Kobler, Oliver Lang, Alexander Melzer
  • Patent number: 11622747
    Abstract: An object of the invention is to provide an ultrasonic CT device in which a reflected signal or the like from an object disposed close to transducers is received, and a reception signal thereof can be received by a receiver while transceivers whose number is smaller than the number of the transducers are used. The ultrasonic CT device includes: a transducer array in which a plurality of transducers are arranged; transceivers whose number is smaller than the number of the transducers; and a transmission transducer selector and a reception transducer selector disposed for each of the transceivers. While a transmitter included in the transceiver is selectively connected to any of the transducers in the transducer array by the transmission transducer selector, a receiver included in the transceiver is selectively connected to any of the transducers in the transducer array by the reception transducer selector.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 11, 2023
    Assignee: FUJIFILM HEALTHCARE CORPORATION
    Inventors: Takahide Terada, Yushi Tsubota, Atsurou Suzuki, Kenichi Kawabata, Kazuhiro Yamanaka
  • Patent number: 11614535
    Abstract: A radar apparatus for a vehicle includes radar sensors, and a controller configured to generate information on the object based on a radar signal reflected by the object entering the fields of sensing of the radar sensors, wherein the controller, when the object is duplicately detected by two or more of the radar sensors, integrates two or more pieces of information on the objects detected by the two or more radar sensors, respectively, into one, and when the object moves from a field of sensing of a first radar sensor to a field of sensing of a second radar sensor, performs control to hand over the information on the object between the first radar sensor and the second radar sensor. Accordingly, information on an object detected by a radar sensor can be efficiently processed and an object moving through fields of sensing of radar sensors can be continuously detected.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: March 28, 2023
    Assignee: HL KLEMOVE CORP.
    Inventor: Kyung Tae Jo
  • Patent number: 11614515
    Abstract: An object recognition method includes generating a first frequency domain signal according to a first echo signal, updating at least one parameter of a primary classifier according to the first frequency domain signal and a training target corresponding to the first frequency domain signal, generating a second frequency domain signal according to a second echo signal, and generating object classification data corresponding to the second frequency domain signal according to the second frequency domain signal and the at least one parameter of the primary classifier. The object classification data is associated with presence of a second object.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: March 28, 2023
    Assignee: RichWave Technology Corp.
    Inventor: Hsiang-Feng Chi
  • Patent number: 11609305
    Abstract: An apparatus comprising an antenna array comprising a plurality of antennas to receive a plurality of radar signals reflected by a plurality of objects responsive to a transmitted radar signal; a doppler measurement module to determine, for a first reflected radar signal of the plurality of reflected radar signals, a first doppler measurement indicating a velocity component based on a comparison of the first reflected radar signal to the transmitted radar signal; a phase offset measurement module to determine a first phase offset of the first reflected radar signal received at a first antenna of the plurality of antennas relative to a phase of the first reflected radar signal received at a reference antenna of the plurality of antennas; and a phase offset calibration module to determine, for the first antenna, a first phase offset calibration error based on the first doppler measurement and the first phase offset.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Nir Dvorecki, Leor Banin, Yuval Amizur, Yaniv Frishman
  • Patent number: 11609318
    Abstract: A surface-based transmitter system for assisting determination of vehicle location is presented. The system comprises a set of radio frequency (RF) transmitter nodes that, when deployed at different respective locations, are configured to output a sequence of respective RF pulses with a predefined inter-pulse delay between each pair of consecutive RF pulses in the sequence, wherein the pre-defined inter-pulse delay is longer than 1 microsecond. The set of RF transmitter nodes include at least a first RF transmitter node, a second RF transmitter node, a third RF transmitter node, and a fourth RF transmitter node, which are configured to output a first RF pulse, a second RF pulse, a third RF pulse, and a fourth RF pulse, respectively, of the sequence of RF pulses.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: March 21, 2023
    Assignees: University Research Foundation, MaXentricTechnoloaies LLC
    Inventors: Mehmet Can Ertem, Eric Heidhausen, Serdar Boztas, Kamran Mahbobi, Brian Woods
  • Patent number: 11592550
    Abstract: A low range altimeter (LRA) may include a transmitter, a receiver, at least one antenna, an active leakage cancellation circuit, and a microcontroller unit (MCU). The transmitter may be configured to transmit a first signal (or transmitted signal) via the at least one antenna. The receiver may be configured to receive a second signal (or received signal) via the at least one antenna. The active leakage cancellation circuit may be configured to receive a portion of the transmitted signal from the transmitter, and may be configured to inject the portion of the transmitted signal into the receiver after an adjustment of the portion of the transmitted signal to reduce leakage observed in the received signal. The MCU may be coupled to the transmitter and the receiver, and may be configured to adjust the portion of the portion of the transmitted signal.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: February 28, 2023
    Assignee: Rockwell Collins, Inc.
    Inventors: Mark A. Billsberry, Shawn M. Mason, David Wright
  • Patent number: 11592544
    Abstract: Methods and devices for estimating a component transmission loss are provided. In an exemplary embodiment, a method includes receiving a desired substrate criterion of a desired substrate, and receiving a desired coating criterion of a desired coating. A component includes the desired substrate and the desired coating. A coating criterion value is received, where the coating criterion value quantifies the desired coating criterion. A desired coating permittivity is estimated for the desired coating, using the coating criterion value, and an estimated component transmission loss of radar signal through the component is produced.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: February 28, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Neil Richard Murphy
  • Patent number: 11585892
    Abstract: A method includes generating emitted signals using transmitter elements and measuring received signals using receiver elements. The received signals are reflected portions of the emitted signals and the received signals correspond to one or more targets. The method also includes applying a first matched filter to the received signals to determine range information for the received signals, filtering the received signals based on the range information to define filtered signals, and determining calibration parameters using the filtered signals. The method also includes correcting the received signals using the calibration parameters to define calibrated signals and determining angle of arrival information for the received signals using the calibrated signals.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 21, 2023
    Assignee: APPLE INC.
    Inventors: Jonathon D. Spaulding, Gregory E. Rogers, Jian Wang
  • Patent number: 11579233
    Abstract: The present invention relates to a radiation source orientation technology. The invention discloses a method for optimizing the orientation performance of radiation source orientation system, which comprises the following steps: establishing a radiation source orientation matrix; obtaining the non-zero singular value of the orientation matrix; classifying orientation noise that affects the radiation source orientation system according to the distribution characteristic of noise energy; determining the optimal orientation matrix of the radiation source orientation system according to the minimum non-zero singular value ?min of the orientation matrix and its number of array elements m; determining the optimal orientation array according to the non-zero singular value of orientation matrix considering the distribution of different noise energy. The invention lays a foundation for the optimal design of a non-planar array in a radiation source orientation system.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: February 14, 2023
    Assignees: Chengdu University of Information Technology
    Inventors: Jiang Wang, Juan Wu, Jianxin He, Yuming Du, Xinggang Zhang, Shoude Wang