Patents Examined by Nazra Nur Waheed
  • Patent number: 11378680
    Abstract: A millimeter-wave (mmW) imaging system comprises a mmW source configured to transmit mmW radiation to a target and a mmW imaging device. The mmW imaging device comprises an array of up-converter elements configured to convert backscatter radiation received from the target directly to visible light. The up-converter array has a first surface and a second surface. The mmW imaging device also comprises a first focusing lens optically coupled to the first surface of the up-converter array and configured to direct backscatter radiation received from the target to the up-converter elements. The mmW imaging device further comprises an an array of photodetectors. The photodetector array has a first surface and a second surface. The first surface of the photodetector array is configured to receive visible light emitted by the up-converter elements. The photodetector array is configured to produce electrical signals indicative of an optical image of the target.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: July 5, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Farzad Michael David Inanlou
  • Patent number: 11374330
    Abstract: A multi-beam telecommunications antenna system with a focusing device including a two-dimensional radiator array generating a plurality of beams simultaneously by setting amplitude-time parameters of the signals for each radiator. The antenna includes: a focusing system having an amplifying lens; a radiating device, for irradiating the amplifying lens and having a two-dimensional radiator array, is disposed at a distance from the amplifying lens and covers a projection area of beams at this distance; and a beam forming system. At least one sub-array of the radiators provides a beam in a set direction. For each beam, the beam forming system provides, for each radiator in the corresponding sub-array, amplitude-time parameters of the signal being transmitted to form a non-planar wavefront, which is equidistant across the amplifying lens to a planar wavefront of the beam. The radiating surface of the radiator array is outside a region of self-intersection of the non-planar wavefronts.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: June 28, 2022
    Inventors: Evgenij Petrovich Basnev, Anatolij Vasilevich Vovk
  • Patent number: 11367965
    Abstract: Disclosed is a liquid crystal panel of a scanning antenna including a transmission and/or reception region in which a plurality of antenna units are arrayed, and a non-transmission and/or reception region, the liquid crystal panel including: a TFT substrate provided with a first dielectric substrate, a TFT supported by the first dielectric substrate, a gate bus line, a source bus line, and a patch electrode; a slot substrate provided with a second dielectric substrate, and a slot electrode formed on a first main surface of the second dielectric substrate and including a slot arranged so as to correspond to the patch electrode; a liquid crystal layer provided between the TFT substrate and the slot substrate and including a plurality of liquid crystal regions; and a plurality of sealing portions that respectively surround the plurality of liquid crystal regions and bond the TFT substrate and the slot substrate together.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 21, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tadashi Ohtake, Takatoshi Orui, Wataru Nakamura, Kiyoshi Minoura, Masanobu Mizusaki
  • Patent number: 11360190
    Abstract: A hardware in the loop simulation and test system that includes a phased array antenna simulation system providing dynamic range and angle of arrival signals simulation and synchronizing for input into a system under test (SUT) that includes a phased array signal processing system along with related methods. Embodiments include system elements that increase precision of signal simulation to include reduced error in angular resolution.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: June 14, 2022
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Mark Alan Chancey, John Andrew Supel, John Matthew Miller, Nicholas Norbert Lee Schuetz, Jerry Carson Turjanica
  • Patent number: 11307303
    Abstract: A ground control point device includes an SAR wave reflector configured to receive an SAR wave incident from an SAR in an incident direction and to reflect the SAR wave in the incident direction; a GNSS receiver configured to receive a GNSS wave to generate, based on the GNSS wave, time information and positional information indicative of a position of a control point; an SAR wave receiver configured to receive the SAR wave; and a control point data generator/transmitter configured to generate control point data obtained by associating the positional information when the SAR receiver receives the SAR wave with a time instant of reception of the SAR wave that is determined based on the time information, and to transmit the control point data to outside.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: April 19, 2022
    Assignee: NEC CORPORATION
    Inventor: Tsunekazu Kimura
  • Patent number: 11300678
    Abstract: The method carries out a measurement of the distance from the ground of an aircraft by undertaking the emission of waveforms making it possible to obtain, after demodulation, of the signals received in return and sampling of the demodulated signals at a frequency Féch, two signals E*0(t) and E*1(t), taking the form of two frequency ramps, of respective slopes K0 and K1, of respective passbands B0 and B1 and of respective durations TE0 and TE1, the N-point FFT spectral analysis of which is carried out. The values of the durations TE0 and TE1 as well as those of the passbands B0 and B1, are defined in such a way as to be able to determine, on the basis of the spectra of the signals E*0(t) and E*1(t), a measurement of non-ambiguous distance d1 covering the maximum distance dmax to be instrumented and an ambiguous distance d0 exhibiting the desired distance resolution. The distance d to be measured being determined by combining these two measurements.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: April 12, 2022
    Assignee: THALES
    Inventors: Thierry Mazeau, Patrick Garrec