Patents Examined by Noah S Wiese
  • Patent number: 7994083
    Abstract: Disclosed are methods for hydrogen loading silica glass and silica glass comprising loaded H2. The methods can lead to H2 gradient in the glass material. Alternatively, the method may involve the use of varying H2 partial pressure of H2 in the atmosphere. Both can result in expedited hydrogen loading process.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: August 9, 2011
    Assignee: Corning Incorporated
    Inventors: Brian Lee Harper, Kenneth Edward Hrdina, John Edward LaSala
  • Patent number: 7989374
    Abstract: A solid oxide fuel cell device includes layers of solid electrolyte, cathode plates, anode plates, a frame and a non-contaminating, electrochemically stable sealing material. The sealing material may have a CTE of about 95×10?7/° C. to about 115×10?7/° C. The sealing material may include from about 65 wt % to about 100 wt % of glass frit and from about 0 wt % to about 35 wt % of a filler material. The glass frit may include from about 0 mol % to about 43 mol % of a metal oxide expressed as RO wherein R comprises magnesium, calcium, strontium, barium, zinc and/or combinations thereof. The glass frit may also include from about 0 mol % to about 5 mol % Al2O3; from about 0 mol % to about 7 mol % TiO2; and from about 41 mol % to about 60 mol % SiO2.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: August 2, 2011
    Assignee: Corning Incorporated
    Inventors: Melinda Ann Drake, Lisa Ann Lamberson, Robert Michael Morena
  • Patent number: 7989378
    Abstract: The present invention is to provide a TiO2—SiO2 glass having suitable thermal expansion properties as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a temperature, at which a coefficient of thermal expansion is 0 ppb/° C., falling within the range of 23±4° C. and a temperature width, in which a coefficient of thermal expansion is 0±5 ppb/° C., of 5° C. or more.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: August 2, 2011
    Assignee: Asahi Glass Company, Limited
    Inventors: Akio Koike, Yasutomi Iwahashi, Shinya Kikugawa
  • Patent number: 7981225
    Abstract: A lead-free primer energetic composition including Cyanuric Triazide (60%), Tetracene (5%), Barium Nitrate (20%) and Antimony Trisulfide (15%) is produced. The lead-free primer energetic composition is used to construct a primary detonator including a transfer charge of Cyanuric Triazide, which produces a further initiation train that may subsequently detonate a secondary explosive, i.e., HDX, RDX, or a pyrotechnic device.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: July 19, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Neha Mehta, Gartumg Cheng, Emily A. Cordaro, Neelam Mehta, Carl Hu, Robert Lateer, Daniel Stec, III, Raja G. Duddu, Paritosh R. Dave, Kathy Yang
  • Patent number: 7981823
    Abstract: A transparent, colorless lithium-aluminosilicate glass ceramic plate with high-quartz mixed crystals as the prevailing crystal phase, which is provided on one side with an opaque, colored, temperature-stable coating over the entire surface or over the entire surface to a large extent, is described, which has a content of Nd2O3 of 40 to 4000 ppm, a Yellowness Index of less than 10% with a 4 mm glass (ceramic) layer thickness, and a variegation of colors of the glass or the glass ceramic in the CIELAB color system of C* of less than 5. The glass ceramic plate preferably has a composition (in % by weight based on oxide) of: Li2O 3.0-4.5, Na2O 0-1.5, K2O 0-1.5, ?Na2O+K2O 0.2-2.0, MgO 0-2.0, CaO 0-1.5, SrO 0-1.5, BaO 0-2.5, ZnO 0-2.5, B2O3 0-1.0, Al2O3 19-25, SiO2 55-69, TiO2 1-3, ZrO2 1-2.5, SnO2 0-0.4, ?SnO2+TiO2<3, P2O5 0-3.0, Nd2O3 0.01-0.4, CoO 0.0-0.004.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: July 19, 2011
    Assignee: Schott AG
    Inventors: Friedrich Siebers, Ulrich Schiffner, Wolfgang Schmidbauer, Klaus Schönberger, Petra Grewer, Erich Rodek
  • Patent number: 7981825
    Abstract: Systems and methods that facilitate operating proton exchange membrane (PEM) fuel cells are provided. The methods can involve contacting a reducing agent comprising a mixture of hydrogen and nitrogen, or a reducing plasma with a cathode catalyst of a proton exchange membrane fuel cell to reduce the cathode catalyst. The systems employ a fuel supply component that supplies fuel to the proton exchange membrane fuel cell; and a regeneration component that provides a reducing agent comprising a mixture of hydrogen and nitrogen, or a reducing plasma to a cathode catalyst of the proton exchange membrane fuel cell to reduce the cathode catalyst.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 19, 2011
    Assignee: Spansion LLC
    Inventors: Tim Z. Hossain, Daniel E. Posey
  • Patent number: 7981824
    Abstract: The present invention relates to a quartz glass blank for an optical component for transmitting radiation of a wavelength of 15 nm and shorter, the blank consisting of highly pure quartz glass, doped with titanium and/or fluorine, which is distinguished by an extremely high homogeneity. The homogeneity relates to the following features: a) micro-inhomogeneities caused by a local variance of the TiO2 distribution (<0.05% TiO2, averaged over a volume element of (5 ?m)3 in relation to the mean value of the TiO2 content), b) an absolute maximum inhomogeneity in the thermal expansion coefficient ?? in the main functional direction (<5 ppb/K), c) a radial variance of the thermal expansion coefficient over the usable surface of the quartz glass blank of not more than 0.4 ppb/(K.cm); d) a maximum stress birefringence (SDB) at 633 nm in the main functional direction of 2 nm/cm with a specific progression; and e) a specific progression of the ??, averaged according to (b) on the optical surface.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: July 19, 2011
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Wolfgang Englisch, Ralf Takke, Bodo Kuehn, Bruno Uebbing, Rainer Koeppler
  • Patent number: 7976893
    Abstract: A heavily boron-doped diamond thin film having superconductivity is deposited by chemical vapor deposition using gas mixture of at least carbon compound and boron compound, including hydrogen. An advantage of the diamond thin film deposited by the chemical vapor deposition is that it can contain boron at high concentration, especially in (111) oriented films. The boron-doped diamond thin film deposited by the chemical vapor deposition shows the characteristics of typical type II superconductor.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: July 12, 2011
    Assignee: National Institute for Materials Science
    Inventors: Yoshihiko Takano, Masanori Nagao, Minoru Tachiki, Hiroshi Kawarada, Hitoshi Umezawa, Kensaku Kobayashi
  • Patent number: 7977266
    Abstract: A ceramic forming batch mixture including inorganic batch materials, such as sources of alumina, titania, and silica, a low amount of one or more pore formers including at least one starch; an organic binder; and a solvent. Also disclosed is a method for producing a ceramic article involving mixing the inorganic batch materials with the low amount of pore former, adding an organic binder and a solvent, forming a green body; and firing the green body. A green body having a low amount of the one or more pore formers including starch is disclosed.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: July 12, 2011
    Assignee: Corning Incorporated
    Inventors: David Lambie Tennent, Christopher John Warren
  • Patent number: 7977264
    Abstract: The optical glasses designated to be used in the areas of imaging, sensors, microscopy, medical technology, digital projection, photolithography, laser technology, wafer/chip technology as well as telecommunications, optical communications engineering and optics/illumination in the automotive sector with a refractive index nd of 1.60?nd?1.72 and/or an Abbe number vd of 32?vd?45 and with a Tg of 567° C. to 640° C., pronounced short flint character, good chemical resistance, excellent resistance to crystallization, good solarization stability and the following composition (in % by weight based on oxides): SiO2 30-45 B2O3 ?8-12 Na2O ?8-15 CaO 0.1-7?? ZnO 0 ? 5 ZrO2 10-20 Nb2O5 12-24 Ta2O5 0 ? 9 AgO ?0 ? 5.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 12, 2011
    Assignee: Schott AG
    Inventors: Silke Wolff, Ute Woelfel, Gordon Kissl
  • Patent number: 7964523
    Abstract: A powder composition for forming a highly expansible crystallized glass substantially free of alkali metals is disclosed, which composition can provide, through its firing at a temperature of not more than 900° C., a seal between metal and ceramic. The powder composition is a powder composition for the formation of a sealing crystallized glass which is substantially free of alkali metals and consists of the powder of a glass containing, calculated as oxides, SiO2: 10-30% by mass, B2O3: 20-30% by mass, CaO: 10-40% by mass, MgO: 15-40% by mass, BaO+SrO+ZnO: 0-10% by mass, La2O3: 0-5% by mass, Al2O3: 0-5% by mass, and RO2: 0-3% by mass (wherein R represents Zr, Ti, or Sn), wherein the crystallized glass that is formed by firing the powder composition at 900±50° C. has a coefficient of thermal expansion of 90-120×10?7/° C. at 50-550 ° C.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: June 21, 2011
    Assignee: Nihon Yamamura Glass Co., Ltd.
    Inventors: Yoshitaka Mayumi, Hideyuki Kuribayashi
  • Patent number: 7964522
    Abstract: An F-doped silica glass, a process for making the glass, an optical member comprising the glass, and an optical system comprising such optical member. The glass material comprises 0.1-5000 ppm by weight of fluorine. The glass material according to certain embodiments of the present invention has low polarization-induced birefringence, low LIWFD and low induced absorption at 193 nm.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: June 21, 2011
    Assignee: Corning Incorporated
    Inventors: Lisa Anne Moore, Charlene Marie Smith
  • Patent number: 7954341
    Abstract: The invention is concerned with a material which shows low absorption for UV radiation having a wavelength below 250 nm, low birefringence, high chemical resistance and high radiation resistance and which is therefore particularly usable for making optical components for microlithography. According to the invention the material consists of synthetically produced quartz crystallites which form a polycrystalline structure and have a mean grain size in the range between 500 nm and 30 ?m. The method according to the invention for making a blank from the material comprises providing granules consisting of synthetically produced quartz crystals having a mean grain size in the range between 500 nm and 30 ?m, and sintering the granules to obtain a blank of polycrystalline quartz.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 7, 2011
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Bodo Kuehn, Stefan Ochs
  • Patent number: 7947618
    Abstract: An optical glass contains, based on a total weight of the optical glass: 12 to 30 weight percent of P2O5; 1 to 5 weight percent of B2O3; 1 to 8 weight percent of Li2O; 0.5 to weight percent of Na2O; 0.5 to 15 weight percent of K2O; 1 to 5 weight percent of CaO; 0 to 20 weight percent of BaO; 0 to 5 weight percent of SrO; 1 to 10 weight percent of TiO2; 1 to 20 weight percent of Bi2O3; 3 to 35 weight percent of Nb2O5; 13 to 60 weight percent of WO3; and 0 to 1 weight percent of Sb2O3, wherein a total weight of Na2O and K2O is in a range of 3 to 20 weight percent based on the total weight of the optical glass.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 24, 2011
    Assignee: Onica Minolta Opto, Inc.
    Inventor: Manabu Izuki
  • Patent number: 7946128
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: May 24, 2011
    Assignee: Corning Incorporated
    Inventors: Lauren Kay Cornelius, Adam James Ellison, Shari Elizabeth Koval
  • Patent number: 7947616
    Abstract: Presently described are retroreflective articles, such as pavement markings, that comprise transparent microspheres partially embedded in a (e.g., polymeric) binder. Also described are (e.g., glass-ceramic) microspheres, methods of making microspheres, as well as compositions of glass materials and compositions of glass-ceramic materials. The microspheres generally comprise lanthanide series oxide(s), titanium oxide (TiO2), and optionally zirconium oxide (ZrO2).
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: May 24, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Anatoly Z. Rosenflanz, Kenton D. Budd
  • Patent number: 7946131
    Abstract: The subject invention is directed to a method for producing a raw material or materials that can be used by themselves or in combination with other ingredients to make glass of high quality at high efficiencies and short production times. The raw materials are capable of high reactivity in a glass melting furnace and therefore will allow glass to be produced either at lower temperatures or shorter residence times at the same temperatures as compared with known methods.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: May 24, 2011
    Assignee: Johns Manville
    Inventors: Jon Frederick Bauer, Susan McMillin Gee
  • Patent number: 7939457
    Abstract: A low expansion glass substrate includes titania and silica and has a thermal expansivity with an average gradient less than 1 ppb/° C./° C. in a temperature range of 19° C. to 25° C.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: Kenneth Edward Hrdina, Robert Sabia
  • Patent number: 7935648
    Abstract: In the nanoimprint lithography, a titania-doped quartz glass having a CTE of ?300 to 300 ppb/° C. between 0° C. and 250° C. and a CTE distribution of up to 100 ppb/° C. at 25° C. is suited for use as nanoimprint molds.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: May 3, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shigeru Maida, Hisatoshi Otsuka
  • Patent number: 7932201
    Abstract: Disclosed are ceramic articles comprising a sintered phase ceramic composition containing, as expressed on a weight percent oxide basis: a(Al2TiO5)+b(ZrTiO4)+c(Y2O3)+d(YPO4) wherein “a, b, c, and d” represent weight fractions of each component such that (a+b+c+d)=1.00 and wherein 0.5<a?0.95; 0?b?0.5, 0.0?c?0.10, and 0?d?0.5. Also disclosed are precursor batch compositions and methods for manufacturing the ceramic articles disclosed herein.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: April 26, 2011
    Assignee: Corning Incorporated
    Inventors: Steven Bolaji Ogunwumi, Cameron Wayne Tanner