Abstract: According to the present embodiment, a fuel cell stack comprises a cell stack having a plurality of unit cells stacked therein, each of the unit cells including an electrolyte membrane, a fuel-electrode porous passage plate, and an oxidant-electrode porous passage plate, wherein in the cell stack, at least a part of one main surface of a conductive fuel-electrode porous passage plate is in contact with one main surface of a conductive oxidant-electrode porous passage plate, and a capillary force of water contained in a hydrophilic micropores of the conductive fuel-electrode porous passage plate and the conductive oxidant-electrode porous passage plate prevents an oxidant gas in an oxidant-electrode passage and a fuel gas in a fuel-electrode passage from directly mixing together.
Type:
Grant
Filed:
January 27, 2022
Date of Patent:
November 28, 2023
Assignees:
Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
Abstract: Disclosed are a system and a method for fuel supply control for a fuel cell. The system includes a fuel supply line, a fuel supply valve, a base duty calculator configured to estimate a required supply amount of a fuel gas required for the fuel supply line on the basis of a power generation state of the fuel cell and to calculate a base duty instruction to open the fuel supply valve on the basis of the estimated required supply amount, and a valve controller.
Abstract: Techniques are disclosed for systems and methods to provide modular battery assemblies for micro-mobility fleet vehicles. A modular battery assembly for a micro-mobility fleet vehicle includes a battery assembly enclosure including an assembly retention interface configured to physically secure the assembly enclosure to a subframe assembly of the micro-mobility fleet vehicle, a battery cell assembly disposed within the battery assembly enclosure, and an enclosure lid mounted to the assembly enclosure. The modular battery assembly may include an arched floorboard panel configured to provide a floor board surface for the micro-mobility fleet vehicle. The battery cell assembly may include a honeycomb battery cell holder and a collector board atop the battery cell holder to provide wire bond interconnects between the battery cells.
Type:
Grant
Filed:
December 27, 2019
Date of Patent:
November 21, 2023
Assignee:
Lyft, Inc.
Inventors:
Andrew Michael Reimer, Adam Christopher Bender, Neil Richard Anthony Saldanha, Timothy Rex Martin, Jared Mitchell Kole, Andrea Claude Ramos Santos
Abstract: A fuel cell system that raises temperature of fuel cells by supplying heated air to the fuel cells during starting up period. The fuel cell system includes a plurality of fuel cells, a fuel supply path connected parallelly to the fuel cells to provide fuel thereto, an air supply path connected serially to the fuel cells to provide air thereto, a heat exchanger arranged in the fuel supply path to heat air or fuel, an air heat exchanger arranged in the air supply path to heat air; and a connection path connecting a position of the air supply path upstream to the air heat exchanger with a position of the fuel supply path upstream to the heat exchanger. A first control valve is arranged in the air supply path for controlling the air flowing into to the air heat exchanger. A second control valve arranged in the connection path for controlling the air flowing into the heat exchanger.
Abstract: An air supply system, comprising at least two air blowers and at least two communication valves; wherein one air blower is connected to a main air passage through the corresponding communication valve; and at least one other is connected to a reformer air passage and a stack air passage through at least one other communication valve, respectively. At least two air blowers are provided to connect the at least two communication valves.
Abstract: The fuel cell control system includes: a reactor; an air compressor, wherein the air compressor has a compressing cavity, the compressing cavity has a gas inlet and a gas outlet, a rotatable pressure wheel is disposed inside the compressing cavity, and the gas outlet is in communication with the reactor; a control flow channel, wherein a first end of the control flow channel is in communication with the gas-intake side of the pressure wheel, a second end of the control flow channel is in communication with the wheel-back side of the pressure wheel, and the control flow channel is provided with a return valve for regulating the flow rate of the control flow channel; and a central control unit, wherein the central control unit is communicatively connected to the return valve to control the opening degree of the return valve.
Type:
Grant
Filed:
February 26, 2021
Date of Patent:
November 7, 2023
Assignee:
GREAT WALL MOTOR COMPANY LIMITED
Inventors:
Pengfei Niu, Gaoxia Zhao, Haifeng Tang, Zeyu Zhang, Xin Jin, Peiming Wu, Xiangjun Wang, Haichao Yu, Zhengyu Wang, Yang Feng, Minglong Kang, Lei Gao, Hongshui Du, Xiaolong Ma, Ruyi Yang
Abstract: A cell module includes a plurality of battery cells each having a safety valve at a first end in a height direction, a first current collector plate including a main body having a through hole that at least partly overlaps the safety valve when viewed along the height direction and a lead extending into the through hole from the main body and being electrically connected to a first terminal of each of the battery cells, an exhaust duct disposed over a surface of the first current collector plate remote from the battery cells, and an insulating film being made of an insulating material and covering an area of the first current collector plate facing the exhaust duct. The safety valve opens when an internal pressure of any of the battery cells reaches or exceeds a predetermined level.
Abstract: The invention relates to a method for operating a fuel cell system (100), having a fuel cell stack (20) with a plurality of fuel cells (110) each having at least one cathode portion (K) and at least one anode portion (A), a compressor (10) for conveying air into the cathode portions (K), a pressure-sustaining valve (40), and a control device (50), the at least one cathode portion (K) being arranged downstream of and in fluid communication with the compressor (10) and upstream of and in fluid communication with the pressure-sustaining valve (40), the fuel cell system (100) having a high-pressure region (HDB) between the compressor (10) and the pressure-sustaining valve (40). The invention further relates to a control device (50) and to a fuel cell system (100).
Abstract: A fuel cell system having a direct liquid fuel cell that uses a liquid containing a formic acid or an alcohol as a fuel includes: a fuel tank that stores the fuel to be supplied to the fuel cell; a fuel supply device that supplies the fuel in the fuel tank to the fuel cell; and a bubbling device that blows an inert gas into the fuel stored in the fuel tank.
Type:
Grant
Filed:
October 23, 2020
Date of Patent:
October 31, 2023
Assignees:
JTEKT CORPORATION, NATIONAL UNIVERSITY CORPORATION KANAZAWA UNIVERSITY
Abstract: A voltage applying unit of a water detecting device applies, to a pair of electrodes, a voltage changing within an application range that includes a first voltage which is smaller than an electrolysis voltage of water and a second voltage which is larger than the electrolysis voltage of the water. A judging unit judges presence or absence of the water based on change in electric current measured by a current measuring unit when the voltage changing within the application range is applied to the pair of electrodes.
Abstract: A fuel cell system includes a first converter to convert power, which is output from a fuel cell stack or a battery, into power in a specific level, a second converter to convert power which is input to or output from the battery, a power relay assembly to control power flow between a super capacitor and the first converter, and a controller to control outputs of the first converter and the second converter, depending on a starting state or an operating state of the fuel cell system, and to control an operation of the power relay assembly.
Type:
Grant
Filed:
December 30, 2021
Date of Patent:
October 10, 2023
Assignee:
Hyundai Mobis Co., Ltd.
Inventors:
Se Hoon Song, Young Hwang Kim, Jae Sung Choi
Abstract: A fuel cell system includes at least one of plural electrochemical pump separators to separate carbon dioxide from a fuel exhaust stream or a combination of a gas separator and a fuel exhaust cooler located outside a hotbox.
Type:
Grant
Filed:
May 2, 2022
Date of Patent:
October 3, 2023
Assignee:
BLOOM ENERGY CORPORATION
Inventors:
David Weingaertner, Matthias Gottmann, Jayakumar Krishnadass, Chockkalingam Karuppaiah, Arne Ballantine, Swaminathan Venkataraman, Martin Perry, John Fisher, Greg Young
Abstract: A hydrogen generator includes a gasifier, upon receiving steam and methane, configured to convert the methane and steam into hydrogen and carbon monoxide; and a carbon trap, operatively connected to the gasifier, configured to capture carbon from the carbon monoxide and allow the hydrogen to pass therethrough. The carbon trap includes iron and a heat source.
Abstract: In a tubular body mounting step, a tubular body is connected to a first end constituting member and a second end constituting member of a fuel cell stack, respectively. At this time, a first opening and a second opening formed at both ends of the tubular body are closed by the first end constituting member and the second end constituting member, respectively. Accordingly, the fuel cell stack is surrounded by the tubular body. A gap is formed between the outer wall of unit cells of the fuel cell stack and the inner wall of the tubular body. In a determination step, a test gas is supplied into the fuel cell stack. Further, whether the test gas exists in the gap is determined.
Abstract: Disclosed herein is a method of controlling start/stop of a parallel fuel cell system, which, when controlling stop of a parallel fuel cell system in which two or more fuel cell systems are connected in parallel, considers operating state information of each fuel cell system, such as a current speed value of an air compressor and an opening degree of an air-exhaust-side air pressure valve of a fuel cell stack. Accordingly, the method can calculate a delay time for performing fuel cell system stop control for the two or more fuel cell systems, and sequentially perform the fuel cell system stop control for the two or more fuel cell systems based on the calculated delay time. Therefore, it is possible to minimize output delay of each fuel cell system and to achieve deterioration prevention and efficiency improvement of the fuel cell stack by fuel cell system start/stop control.
Type:
Grant
Filed:
May 12, 2022
Date of Patent:
October 3, 2023
Assignees:
HYUNDAI MOTOR COMPANY, KIA CORPORATION
Inventors:
Sung Do Kim, Joo Yeon Kim, Min Su Kang, Chang Seok You
Abstract: A fuel cell system (300) in which, at the time of starting up a first fuel cell set (109a) and a second fuel cell set (109b), one of a first air supply unit (102a) or a second air supply unit (102b) is driven and then the another air supply units is driven so that electric power of the another air supply units reaches a peak after an output voltage of the one of the fuel cell stacks reaches the first output value.
Abstract: An incorporated air supplying apparatus for a fuel cell stack and a method for controlling an air flow using the same are described. The apparatus includes an air supply part supplying air to a plurality of fuel cell stacks, a plurality of pipes configured to transmit the air supplied from the air supply part to each of the fuel cell stacks, a flowmeter and a valve installed at each pipe, and a controller controlling an opening degree of each of the valves, based on information on the measured flow. The controller controls the opening degree of the valve installed at each pipe, thus enabling the air flow for each pipe to be controlled.
Abstract: A water electrolysis and electricity generating system is equipped with a water introduction flow path, an oxygen-containing gas flow path, an oxygen-containing gas introduction flow path, a first gas-liquid separator, and a dilution flow path. The oxygen-containing gas introduction flow path introduces the oxygen-containing gas that flows through the oxygen-containing gas flow path into the first supply flow path. The first gas-liquid separator separates into a gas and a liquid the gas-containing water that is guided from the first lead-out flow path connected to the first outlet port member. The dilution flow path guides the oxygen-containing gas that flows through the oxygen-containing gas flow path to the first gas-liquid separator as a diluting gas.
Abstract: A system and method for controlling operation of a fuel cell system, includes determining whether there is a risk of flooding by confirming whether the fuel cell system satisfies a predetermined flooding risk condition, and performing air supercharging by supplying air at a flow rate increased compared to an air supply demand to fuel cells of the fuel cell system, when the controller confirms that the fuel cell system satisfies the flooding risk condition.
Abstract: A stack ventilation system includes a supply line that supplies a supply gas to an air electrode of a fuel cell stack, a discharge line that discharges an exhaust gas released from the air electrode, and a stack supply line that branches off from a branching point of the supply line and that supplies the supply gas in the supply line to a stack enclosure in which the fuel cell stack is accommodated.
Type:
Grant
Filed:
March 22, 2021
Date of Patent:
September 19, 2023
Assignees:
Hyundai Motor Company, Kia Motors Corporation