Patents Examined by Olumide Ajibade-Akonai
  • Patent number: 11815619
    Abstract: Some embodiments of the invention provide Pulse Doppler Polarimetric radars that are configured in a manner to eliminate traditional components that contribute to the high system cost, the overall weight and the low reliability of the radars. In some embodiments, each radar includes a (1) a beam steering walking splash plate with positioning actuator(s), (2) a feed horn antenna with wave guide assembly, (3) a parabolic reflector, (4) radar electronic components, and (5) radome and mounting bracket(s). The feed horn antenna, parabolic reflector, and wave guide assembly (including a signal generator) are stationary with respect to each other in some embodiments.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: November 14, 2023
    Assignee: STORMQUANT, INC.
    Inventors: Kevin Shoemaker, Andrew Bryant, Nick Muhlhauser
  • Patent number: 11802934
    Abstract: An auto-location method for electronic equipment items provided with a transmitter/receiver of radioelectric signals, includes the steps of: establishing a list of the equipment items with their relative position and the measurements of distances between the equipment items, detecting, using the list, at least one non-measured distance between a first equipment item and a second equipment item, the transmitter/receiver of which has a plurality of available operating modes, changing the operating mode of the transmitter/receiver of the second equipment item and attempting to measure the distance between the first equipment item and the second equipment item, and updating the list with the last distance measured. A system and a program implement this method.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: October 31, 2023
    Assignee: SAGEMCOM BROADBAND SAS
    Inventors: Patrick Berthele, Jean-Philippe Jaulin
  • Patent number: 11796636
    Abstract: An apparatus is described that, according to an exemplary embodiment, has an RF oscillator for generating an RF oscillator signal at a first frequency and a frequency divider having a division ratio that is fixed during operation. The frequency divider is supplied with the RF oscillator signal and is configured to provide an oscillator signal at a second frequency. The apparatus further has a monitor circuit, to which the oscillator signal at the second frequency is supplied and which is configured to measure the second frequency and to provide at least one digital value that is dependent on the second frequency of the oscillator signal. The at least one digital value is provided on a test contact.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: October 24, 2023
    Assignee: Infineon Technologies AG
    Inventors: Bernhard Greslehner-Nimmervoll, Georg Krebelder, Jochen O. Schrattenecker
  • Patent number: 11796662
    Abstract: The present provides a radar apparatus and an antenna apparatus for the radar apparatus. The radar apparatus may include two first transmission antennas disposed on both sides of the transmission antenna set and the second transmission antenna disposed between two first transmission antennas spaced apart from the first transmission antenna by the vertical distance A in a first direction perpendicular to the ground, and may include the four receiving antennas disposed apart from each other by a predetermined horizontal distance, and may transmit the code divided transmission signals through two transmission antenna according to the detection mode, so that the vertical information and the horizontal information of the object can be easily obtained in the long range detection mode and the short range detection mode.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: October 24, 2023
    Assignee: HL Klemove Corp.
    Inventors: Jae Eun Lee, Hae Sueng Lim, Seong Hee Jeong
  • Patent number: 11789141
    Abstract: The present disclosure relates to an omnidirectional sensor fusion system and method and a vehicle including the same. The omnidirectional sensor fusion system includes a sensor track processing unit configured to receive recognition information from one or more sensors to generate a sensor track, a sensor track association determination unit configured to determine, based on the generated sensor track being located at an overlapping point of sensing regions of the one or more sensors, an association between a previous sensor fusion track and the sensor track, the sensor track association determination unit further configured to change sensor track information in response to the determined association and output a sensor fusion track, a sensor fusion track tracing unit configured to trace the output sensor fusion track, and a sensor fusion track maintenance unit configured to maintain the traced sensor fusion track.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: October 17, 2023
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Hoon Lee, Sang Bok Won, Hyung Sun Jang, Bo Young Yun, Seul Ki Han, Ji Eun Won, Uk Il Yang
  • Patent number: 11789116
    Abstract: A radar reflector is positioned at a predetermined angle and distance from a device to be tested. The device to be tested includes at least one of a transmit phased array antenna and a receive phased array antenna. At least two antenna elements of the at least one of a transmit phased array antenna and a receive phased array antenna are activated to carry out one of transmitting and receiving. A plurality of phase control settings are cycled through to determine an optimum phase control setting for the predetermined angle.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: October 17, 2023
    Assignee: International Business Machines Corporation
    Inventors: Alberto Valdes Garcia, Petar K. Pepeljugoski
  • Patent number: 11782148
    Abstract: Aspects of the present disclosure provide for a radar system including a radar IC including a timing engine, a local oscillator, and a modulator. The timing engine is configured to generate one or more chirp control signals. The local oscillator is configured to receive the one or more chirp control signals and generate a frame including a first sequence of chirps according to the one or more chirp control signals. The modulator is configured to modulate the first sequence of chirps to generate a second sequence of chirps so the frame includes the first sequence of chirps and the second sequence of chirps offset by a first frequency value.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 10, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Karthik Subburaj, Sandeep Rao, Sriram Murali, Karthik Ramasubramanian
  • Patent number: 11783371
    Abstract: Methods, devices, and systems are disclosed for home based electric vehicle (EV) charging. According to one embodiment, a method is implemented on an EV charger for determining relative position of a mobile device to an EV charger in accordance with embodiments of the present disclosure. The method includes receiving known location data associated with a global position of the EV charger, wherein the known location data has an accuracy better than 10 centimeters, receiving first global navigation satellite system (GNSS) timestamped data associated with the EV charger from a first constellation of GNSS satellites, determining first GNSS location data based on the first GNSS timestamped data, and determining first GNSS error data based on the first GNSS location data and the known location data.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: October 10, 2023
    Assignee: IoTecha Corp.
    Inventors: Oleg Logvinov, Kimberly Sarubbi, Adrian Weidmann
  • Patent number: 11762071
    Abstract: A method for multi-sensor calibration includes imaging a calibration target with a first sensor using a first modality to obtain a first set of data and a second sensor using a second modality that is different from the first modality to obtain a second set of data. A border of the calibration target is identified based on the first set of data. A first centroid location of the calibration target is identified based on the border of the calibration target. A border of a pattern disposed on the calibration target is identified based on the second set of data. A second centroid location of the calibration target is identified based on the border of the pattern. Calibration data for the first sensor and the second sensor is generated based on the first centroid location and the second centroid location.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: September 19, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Muhammad Zubair Ikram, Do-Kyoung Kwon
  • Patent number: 11754973
    Abstract: The present invention relates to the technical fields of optical imaging, microwave imaging, radar detection, sonar, ultrasonic imaging, and target detection, imaging identification and wireless communication based on media such as sound, light and electricity, and in particular, to a fast imaging method suitable for passive imaging and active imaging and application of the fast imaging method in the above fields. According to the method provided by the present invention, image field distribution corresponding to a target is achieved based on a lens imaging principle, in combination with an electromagnetic field theory, according to a target signal received by an antenna array, through the amplitude and phase weighting of a unit signal and by using an efficient parallel algorithm.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: September 12, 2023
    Inventors: Jilong Zhang, Jikang Zhang, Yiheng Zhang, Yuhua Song, Xiaolin Yu
  • Patent number: 11754664
    Abstract: Disclosed herein are a method for access control using real-time positioning technology and a device using the same. According to a positioning method of a positioning module, the positioning module is configured to measure a location of at least one location-unrecognized device and a location of a terminal, wherein the at least one location-unrecognized device, the terminal and at least one location-recognized device is located in a certain zone, and wherein the positioning module has coordinate information of the at least one location-recognized device and the positioning module has not coordinate information of the at least one location-unrecognized device.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: September 12, 2023
    Assignee: SUPREMA INC.
    Inventors: Si Woong Yoon, Tae Sung Lee, Jae Hyeok Jeong, Tae Hoon Lee
  • Patent number: 11754668
    Abstract: A detection method includes determining a first frequency point of N frequency points, transmitting a radio signal in a first frequency band in N frequency bands. One of the N frequency bands partially overlaps at least one frequency band in other N?1 frequency bands, and an absolute value of a difference between lowest frequencies of any two frequency bands of the N frequency bands is not less than a first threshold (F), or the N frequency bands have at least one second frequency band that partially overlaps the first frequency band, and an absolute value of a difference between a lowest frequency of each second frequency band and a lowest frequency of the first frequency band is not less than F.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: September 12, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Lutao Gao, Sha Ma, Sida Song
  • Patent number: 11726197
    Abstract: A system for determining the physical path of an object can map several candidate paths to a suitable path space that can be explored using a convex optimization technique. The optimization technique may take advantage of the typical sparsity of the path space and can identify a likely physical path using a function of sensor observation as constraints. A track of an object can also be determined using a track model and a convex optimization technique.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: August 15, 2023
    Assignee: QUALCOMM Technologies, Inc.
    Inventors: Muthu M. Baskaran, Thomas Henretty, Ann Johnson, Athanasios Konstantinidis, M. H. Langston, Janice O. McMahon, Benoit J. Meister, Paul D. Mountcastle, Aale Naqvi, Benoit Pradelle, Tahina Ramananandro, Sanket Tavarageri, Richard A. Lethin
  • Patent number: 11714188
    Abstract: The invention relates to a dual detector comprising a detection head having: an inductive sensor which is mounted on the platform (11) and includes a transmitter coil (12) and a separate receiver coil (13), the transmitter coil (12) and the receiver coil (13) each forming a loop, a soil penetrating radar (60) comprising a transmitter antenna (61) and a receiver antenna (62), the transmitter antenna (61) and the receiver antenna (62) each being accommodated in the center of one of the loops of the transmitter and receiver coils (12) (13), the transmitter antenna (61) and the receiver antenna (62) having a maximum thickness (e) of one micron in order to limit interference with the inductive sensor (12).
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 1, 2023
    Inventor: Alessandro Manneschi
  • Patent number: 11714165
    Abstract: A method for determining presence of an object via a vehicular radar sensing system includes providing a radar sensor having a plurality of antennas, which includes a plurality of transmitting antennas and a plurality of receiving antennas. The plurality of antennas includes a plurality of sets of antennas, each set having a V shape or an X shape, and with each of the shaped sets of antennas having an apex. A signal feed is provided to the apex of each of the shaped sets of antennas. A radar beam is transmitted via the plurality of transmitting antennas and side lobes of the transmitted radar beam are reduced via the plurality of shaped sets of antennas. An output of the receiving antennas is communicated to a processor, and the processor determines presence of one or more objects exterior the vehicle and within the field of sensing of the radar sensor.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: August 1, 2023
    Assignee: Magna Electronics Inc.
    Inventor: Holger Hess
  • Patent number: 11709242
    Abstract: A method for detecting a living being on a seat of a vehicle, further relating to a detection arrangement and to a vehicle. The method may include emitting electromagnetic waves at predetermined frequency or at a predetermined frequency band towards the seat by an electromagnetic radiator, receiving electromagnetic waves reflected on a surface by a sensor, detecting an object on the seat from a transit time of the emitted and the reflected electromagnetic waves between the radiator, the surface and the sensor by a detection device, detecting movements of the object from the reflected electromagnetic waves by the detection device if an object has been detected, determining from the detected movements of the object whether the detected object is a living being, and outputting a detection signal by way of the detection device if it has been determined that the detected object is a living being.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: July 25, 2023
    Inventors: Sergej Gauerhof, Carsten Topf, Wolfgang Uebel, Benjamin Gruenewald
  • Patent number: 11709040
    Abstract: A proximity sensor for a Laser Guided Bomb (LGB) is provided. A proximity sensor for a Laser Guided Bomb (LGB) includes: an electronics package unit (EPU) configured to be connected to a front end of a warhead; and at least one sensor separate from the EPU and configured to be connected to a forward adapter that is connected to the front end of the warhead. The at least one sensor is configured to obtain data that is used to determine a height above ground of the LGB. The EPU is configured to compare the determined height above ground to a predefined value. The EPU is configured to generate a detonation signal for the warhead based on the determined height above ground being equal to or less than the predefined value.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: July 25, 2023
    Assignee: KAMAN PRECISION PRODUCTS, INC.
    Inventor: Barry A. Maxwell
  • Patent number: 11698461
    Abstract: A system and method of identifying and responding to a GPS denial of service includes: configuring a mode S transponder for transmitting a GPS time-of-day message as a downlink format message using a BDS register, and configuring an aircraft surveillance system for receiving one or more GPS time-of-day messages transmitted as a downlink format message. The surveillance system compares the received time-of-day message(s) from the aircraft to a comparison time of day, and validates reception of authentic GPS signals by the aircraft when the received time-of-day message is within a threshold amount of the comparison time of day. The comparison time of day may be the GPS time of day of one of a plurality of aircraft in the surveillance volume or may be the GPS time of day determined by the aircraft surveillance system. An indicator on the transponder indicates counterfeit GPS signals, permitting mitigation od induced navigation error.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: July 11, 2023
    Assignee: Telephonics Corp.
    Inventors: Frank D. Messina, Michael Stein
  • Patent number: 11698453
    Abstract: A cellular network system and method provided herein are directed to generating an area topographic map of a surrounding area of the cellular network system. The cellular network system comprises a transmitter, a receiver, memory, and one or more processors (processors) communicatively coupled to the transmitter, the receiver, and the memory. The memory stores computer-executable instructions that, when executed by the processors, perform certain operations. The transmitter transmits in a target direction a first signal, which is a communication signal intended for a user equipment (UE) and the receiver receives a second signal. The processors determine whether the second signal is a reflected signal associated with the first signal, determine topographic data associated with the surrounding area of the cellular network system in the target direction based at least in part on the second signal, and generate the area topographic map of the surrounding area based on the topographic data.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: July 11, 2023
    Assignee: T-Mobile USA, Inc.
    Inventors: Andrew Gapin, Paul Bongaarts
  • Patent number: 11693086
    Abstract: Techniques and apparatuses are described that implement a smart device with an integrated radar system. The radar integrated circuit is positioned towards an upper-middle portion of a smart device to facilitate gesture recognition and reduce a false-alarm rate associated with other non-gesture related motions of a user. The radar integrated circuit is also positioned away from Global Navigation Satellite System (GNSS) antennas and a wireless charging receiver coil to reduce interference. The radar system operates in a low-power mode to reduce power consumption and facilitate mobile operation of the smart device. By limiting a footprint and power consumption of the radar system, the smart device can include other desirable features in a space-limited package (e.g., a camera, a fingerprint sensor, a display, and so forth).
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: July 4, 2023
    Assignee: Google LLC
    Inventors: David J. Weber, Maryam Tabesh, Jian Wang, Camille Ann Lesko, Alexis K. Salazar, Abhijit Aroon Shah