Abstract: A smart city management system may enable creating a digital twin of the smart city based on mapping lidar data for the smart city and radio frequency data for the smart city; determining placement of a set of network devices in the smart city based on the created digital twin; and providing a visualization of the determined placement of the set of network devices.
Type:
Grant
Filed:
September 29, 2021
Date of Patent:
April 9, 2024
Inventors:
Katherine Carey Hunt, Edward Rene Sanchez Carter, Kyle Andrew Metiva
Abstract: A radar sensor is described. The radar sensor includes at least two synchronously operating high frequency components, which each have at least one signal path in which the phase of the transmitted high frequency signal is varied by a temperature-dependent phase difference. In each high frequency component, a phase detector is connected in parallel to the signal path, which supplies a signal that assumes an extremum at a certain phase difference independently of the temperature, and a phase shifter is situated in the signal path, ith the aid of which the phase difference is settable in such a way that the signal of the phase detector assumes the extremum.
Type:
Grant
Filed:
June 18, 2019
Date of Patent:
April 9, 2024
Assignee:
ROBERT BOSCH GMBH
Inventors:
Marcel Mayer, Dirk Steinbuch, Michael Schoor
Abstract: A method for implementing a relocatable Over-The-Horizon-Radar (OTHR) including transmitting mutually orthogonal signals on each of a plurality of antenna elements of a transmitting system, and receiving and decoding the signals at a plurality of receiving systems to synthesize beams from the orthogonal signals. Each receiving system has a plurality of antenna elements fewer in number than the plurality of antenna elements of said transmitting system. The method includes connecting as a network the transmitting system, the plurality of receiving systems, and a network controller.
Abstract: A transmitter device of a bi-static or multi-static radar system is disclosed and implemented for aerial surveillance. The transmitter device is intended to be on board a satellite orbiting the Earth. Once in orbit, the transmitter device is configured to obtain information relating to a region of interest monitored by at least one receiver device of the radar system, and to transmit a signal in a radio beam illuminating at least one portion of the region of interest.
Type:
Grant
Filed:
September 7, 2021
Date of Patent:
April 9, 2024
Assignee:
AIRBUS DEFENCE AND SPACE SAS
Inventors:
Nicolas Jeannin, Frédéric Voulouzan, Philippe Bertheux
Abstract: An antenna apparatus, a communication apparatus, and a steering adjustment method thereof are provided. The antenna apparatus includes an antenna structure. The antenna structure includes an antenna unit. The antenna unit includes i feeding ports, where i is a positive integer larger than 2. A vector of each of the feeding ports is controlled independently. In the steering adjustment method, a designated direction is determined, where the designated direction corresponds to beam directionality of the antenna structure. In addition, the vectors of the feeding ports of the antenna unit are configured according to the designated direction. Accordingly, the antenna size can be reduced, and beam steering in multiple directions would be achieved.
Abstract: Application developers can request to have their applications registered for use with a content delivery platform. The operator of the content delivery platform establishes perimeters defining geographic areas, and maintains records reserving particular areas for delivery of content associated with particular sponsors. Registered applications running on mobile devices can request content from the content delivery platform. Based at least in part on the request, the content delivery platform can identify a target location, which may be the location of the mobile device, or some other location indicated in the request. A mobile device can be provided content based on the relationship of the target location to the geographic areas, so that a registered application running on a mobile device with a target location contained within a geographic area assigned to a particular sponsor will receive content related to that sponsor.
Abstract: A radar transceiver includes a receiver. The receiver includes a low noise amplifier a mixer, a baseband filter, an integrator, and a phase shifter. The mixer includes an input coupled to an output of the low noise amplifier. The baseband filter includes an input coupled to an output of the mixer. The integrator includes an input coupled to an output of the baseband filter. The phase shifter includes a control input and an output. The control input is coupled to an output of the integrator.
Type:
Grant
Filed:
November 12, 2019
Date of Patent:
April 2, 2024
Assignee:
Texas Instruments Incorporated
Inventors:
Sreekiran Samala, Venkatesh Srinivasan, Vijaya B. Rentala
Abstract: A telematics control entity to determine position data of a vehicle having a network access entity connected to a cellular network and configured to transmit, in case of an emergency, a vehicle position via the cellular network to a service entity configured to collect the vehicle positions for a plurality of vehicles. An antenna signal interface is configured to receive satellite-based measurement data and at least one position determining unit is configured to determine positioning data of the vehicle based on the satellite-based measurement data. A predefined integrity level describing a predefined risk classification of the functional safety is guaranteed to be provided by the positioning data. The positioning data is provided to an application entity in the vehicle requiring the predefined integrity level for the received positioning data.
Abstract: A radar device includes radar transmission and receiving circuits. The radar transmission circuit transmits one or more transmission signals, each having a transmission period Tr. The radar receiving circuit receives one or more reflected signals in which the transmission signals are reflected by an object and estimates a direction of the object based on the reflected signals. The radar transmission circuit includes Nt transmission antennas. A control circuit sets a transmission gap period between a first and second periods, with the transmission gap period being a period during which the transmission signals are not transmitted. The first period is equal to an integral multiple of a period Np, the period Np is equal to or more than Nt times the transmission period Tr, and the second period is set after the first period and is equal to an integral multiple of the period Np.
Abstract: Described is a method performed by a computing device for generating policies for improving network system performance, the method comprising: receiving operational data from a network device; processing the operational data from the network device to generate a Wi-Fi management policy; merging the Wi-Fi management policy, a mobile device policy, and a user preference or user policy to generate a unified policy; and sending the unified policy to the network device for network management.
Abstract: A received signal DOA estimation method using generation of virtual received signals includes: generating a preset number of virtual antennas at preset positions of a plurality of actual antennas; generating received signals received from the virtual antennas; and generating a DOA estimation value through a DOA estimation algorithm using the received signals received from the virtual antennas and the received signals received from the actual antennas.
Abstract: In one example, a radar circuit uses computer processing circuitry for processing data corresponding to reflection signals via a sparse array. Output data indicative of signal magnitude associated with the reflection signals is generated, and then angle-of-arrival information is discerned therefrom by (e.g., iteratively): correlating the output data with at least one spatial frequency support vector indicative of a correlation peak for the output data; generating upper-side and lower-side support vectors which are neighbors along the spatial frequency spectrum for said at least one spatial frequency support vector, and providing, via a correlation of the upper-side and lower-side support vectors and said at least one spatial frequency support vector, at least one new vector that is more refined along the spatial frequency spectrum for said at least one spatial frequency support vector.
Type:
Grant
Filed:
February 25, 2021
Date of Patent:
March 12, 2024
Assignee:
NXP B.V.
Inventors:
Ryan Haoyun Wu, Jun Li, Maik Brett, Michael Andreas Staudenmaier
Abstract: Apparatus and methods provide anti-spoofing capability from a first global navigation satellite system (GNSS) receiver to a second GNSS receiver. These GNSS receivers can be, for example, global positioning satellite (GPS) receivers. Via an authentication technique, signals from authentic GNSS sources are distinguished from signals from spoofers. Timing information, such as numerically-controlled oscillator (NCO) settings, used for tracking authenticated signals are then used to generate replica GNSS signals, which are then provided to the second GNSS receiver. As a result, the second GNSS receiver can provide accurate positioning system information in the presence of GNSS spoofers.
Abstract: Examples disclosed herein relate to an adaptive radar for near-far target identification. The radar includes an antenna module configured to radiate a transmission signal with an analog beamforming antenna in a plurality of directions using one or more phase control elements in a first radar scan and to generate radar data capturing a surrounding environment. The radar also includes a data pre-preprocessing module configured to receive the radar data and determine adjustments to transceiver parameters in the antenna module for a second radar scan subsequent to the first radar scan based at least on range. The radar also includes a perception module configured to detect and identify a target in the surrounding environment from the radar data. Other examples disclosed herein relate to methods of near-far target identification in a radar.
Abstract: A occupant detection and monitoring system has a sensor unit having a radio wave transmitter, a radio wave receiver, and a wireless transmitter configured to detect and receive vital signs of an occupant; a user interface having a microcontroller, a wireless receiver configured to receive the wireless signals transmitted from the sensor unit, a means for user input, and a network card; and a means for alerting occupants and third-parties to a triggering event; wherein the microcontroller, based upon logic, activates the alerting means at the triggering event. The sensor unit may be a camera that detects the presence of an individual and register their unique heart rhythm for identification purposes. This camera can be installed at the entry points of a home, behind the counter of a business near a cash register or at a bank or any other place that desires to use surveillance as a form of security. The sensor unit may be a light bulb that comprises the components of the sensor unit.
Type:
Grant
Filed:
December 6, 2018
Date of Patent:
March 5, 2024
Assignee:
Praesidium, Inc.
Inventors:
Seth Campbell, Richard Curtis Nordgran, Weston Brent Johnson, Paolo Focardi, Gian Franco Sacco, Jim Butler
Abstract: Systems and methods are provided that may be implemented to modify information of an audio data transmission based on one or more measured signal reception and/or transmission characteristics of a radio frequency (RF) signal data transmission that contains or otherwise conveys the audio data transmission. The modified audio data may then be acoustically reproduced in analog form as sound waves. Examples of signal reception characteristics of a RF signal data transmission that may be measured and used as a basis for modifying information of audio data of an audio data transmission include, but are not limited to, time Difference of Arrival (TDOA), Angle of Arrival (AoA), measured received signal strength, etc. Example signal transmission characteristics of a RF signal that may be measured and used as a basis for modifying information of audio data include, but are not limited to, Angle of Departure (AoD).
Abstract: A portable radar system that may leverage the processing power, input and/or display functionality in mobile computing devices. Some examples of mobile computing devices may include mobile phones, tablet computers, laptop computers and similar devices. The radar system of this disclosure may include a wired or wireless interface to communicate with the mobile computing device, or similar device that includes a display. The radar system may be configured with an open set of instructions for interacting with an application executing on the mobile computing device to accept control inputs as well as output signals that the application may interpret and display, such as target detection and tracking. The radar system may consume less power than other radar systems. The radar system of this disclosure may be used for a wide variety of applications by consumers, military, law enforcement and commercial use.
Abstract: Methods and systems for detecting human presence in an outdoor monitored site are disclosed. In an configuration, the method may include providing at least three transmitters for transmitting radio signals and at least three receivers for receiving radio signals. Channel state information (CSI) data is extracted from the radio signals. The CSI data include phase values and amplitude values. The CSI data is converted into an image representation map and then a surface map is generated using Machine Learning (ML) networks. The surface map is a representation of correspondence between the image representation map and a 3-dimensional (3D) surface associated with a human body.
Abstract: A pallet safety system includes one or more of a pallet bed monitoring system, a pallet height monitoring system, and a pallet interface monitoring system, each of which provide an emitter and a detector. The safety system may be configured to be retrofit to an existing pallet system and is enabled to monitor the presence of unwanted obstructions at various regions proximate to the pallet bed opening, including a plane region above and parallel to the pallet beds, a region proximate to an interface between the pallet system and a material processing system, and a region between an upper and lower pallet.
Abstract: Provided is an object shape detection apparatus that can detect the shape of a raised or depressed portion on the surface of an object. In accordance with a comparison result obtained by a reflection intensity comparator with regard to intensity of a horizontally polarized wave component and a vertically polarized wave component of a reflected wave, the object shape determiner detects the shape of the raised portion and the shape of the depressed portion of a detection target object. The object locator detects the position of the raised portion and the position of the depressed portion of the detection target object by measuring the distance to the raised portion and the distance to the depressed portion of the detection target object detected by the object shape determiner.