Patents Examined by Omar Nixon
  • Patent number: 10048055
    Abstract: An optical probe for irradiating light onto a subject includes an optical path control unit configured to receive light from outside the optical probe, and change a path of the light within the optical probe; an optical path length control element configured to receive the light having the changed path from the optical path control unit, and change an optical path length of the light as the optical path control unit changes the path of the light; and an optical output unit configured to receive the light having the changed optical path length from the optical path length control element, and output the light.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: August 14, 2018
    Assignees: Samsung Electronics Co., Ltd., Korea University Research and Business Foundation
    Inventors: Jae-guyn Lim, Hyun Choi, Min-seog Choi, Won-he Choe, Seong-deok Lee, Woo-young Jang, Beop-min Kim, Hyun-woo Jeong
  • Patent number: 10043759
    Abstract: An overlay mark comprises a first feature in a first layer. The first feature has a length extending in a first longitudinal direction and a width extending in a second longitudinal direction. The length of the first feature is greater than the width of the first feature. The overlay mark also comprises a second feature in a second layer over the first layer. The second feature has a length extending in the second longitudinal direction and a width extending in the first longitudinal direction. The length of the second feature is greater than the width of the second feature. The overlay mark further comprises a third feature in a third layer over the second layer. The third feature is a box-shaped opening in the third layer.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: August 7, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Yu Chen, Ming-Feng Shieh, Ching-Yu Chang
  • Patent number: 10042264
    Abstract: A measurement system (10) for determining a polarization parameter of an optical system (50) has an illumination system (12) providing an optical radiation (14), a measurement mask (22) arranged between the illumination system and the optical system and including measurement structures (24) arranged at a plurality of field points (26) of the measurement mask, a polarization variation device (28) arranged in a beam path of the optical radiation and configured to vary a polarization state of the optical radiation in a field-point-dependent manner, such that at the same point in time one of the field points is irradiated with the optical radiation (14-1) in a first polarization state and another of the field points is irradiated with the optical radiation (14-2) in a second polarization state, and a detection module (32), which is configured to detect the optical radiation after it has interacted with the optical system.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: August 7, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Andreas Wirsing
  • Patent number: 10031044
    Abstract: Methods and systems for providing real-time monitoring of a metal surface are provided herein. The system includes a fiber-optic cable disposed alongside a length of a wall that includes the metal surface. A laser source is attached to the fiber-optic cable to transmit light through the fiber-optic cable. An acoustic source is configured to generate acoustic signals in the metal surface, wherein the acoustic signals interact with the fiber-optic cable and influence characteristics of the light. A receiver is attached to the fiber-optic cable to detect the light. The system also includes a signal processing unit configured to determine a location of a change in the metal surface based on changes in the characteristics of the light.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: July 24, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Amit Kumar, Ramani V. Reddy
  • Patent number: 10026999
    Abstract: A detection method in which light is irradiated on a bagged electrode, and an electrode is disposed inside of a bag-shaped separator for detecting breakage of the separator, the method includes capturing an image by irradiating the light onto the bagged electrode so that a first portion in which the light has been transmitted through n layers of the separator, and a second portion in which the light has been transmitted through equal to or less than n?1 layers of the separator, will have mutually different brightness levels, while capturing an image of the bagged electrode, detecting the first portion from the brightness of the image that is obtained by capturing the bagged electrode, and determining a breakage of the separator, based on the distance between edges of the first portion, and of an electrode portion where the light does not pass through.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: July 17, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Teruyuki Ishiwata, Isao Aramaki
  • Patent number: 10024786
    Abstract: A method for calibrating an optical fluid sensor, the method including providing a calibration element having defined properties similar to those of a fluid to be measured; simulating optical characteristics of the fluid to be measured, with the aid of the calibration element, a measuring radiation being routed onto the calibration element, and evaluating the measuring radiation modified by the calibration element, at least one calibration point of the fluid being ascertained with the aid of the calibration element.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 17, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventor: Paul Koop
  • Patent number: 10018565
    Abstract: A method that includes: illuminating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer; filtering photoluminescence emitted from a portion of the wafer in response to the illumination; directing the filtered photoluminescence onto a detector to image the portion of the wafer on the detector with a spatial resolution of 1 ?m×1 ?m or smaller; and identifying one or more crystallographic defects in the wafer based on the detected filtered photoluminescence.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: July 10, 2018
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Zoltan Tamas Kiss, Laszlo Dudas, Gyorgy Nadudvari, Nicolas Laurent, Lubomir L. Jastrzebski
  • Patent number: 10018548
    Abstract: A measurement device includes a first flow passage, a heating unit provided on one end side of the first flow passage, a gas detection unit provided on one end side of the first flow passage and capable of detecting a gas through heat applied from the heating unit, and a particle measurement unit which optically measures, at an upper side than the heating unit of the first flow passage, particles passing through the first flow passage.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: July 10, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Osamu Tsuboi, Michio Ushigome, Satoru Momose
  • Patent number: 10012493
    Abstract: An electronic device for detecting a position of an object is disclosed, The electronic device includes an optical source configured to emit light to a detection area, a light concentrator configured to concentrate light reflected by a target object located in a detection area, a light receiver configured to receive through photodiodes the reflected light concentrated by the light concentrator and to output a light quantity pattern of the reflected light, and a processor configured to determine the position of the target object based on the light quantity pattern of the reflected light.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: July 3, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung Woo Kim, Joon Ah Park, Kyoung Seok Pyun, Jung Soon Shin, Hong-Seok Lee, Tae Sung Jung, Baek Hwan Cho, Seung Hoon Han
  • Patent number: 10012593
    Abstract: In an example implementation, a method includes illuminating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer. The method also includes detecting photoluminescence emitted from a portion of the wafer in response to the illumination, and detecting excitation light reflected from the portion of the wafer. The method also includes comparing the photoluminescence emitted from the portion of the wafer and the excitation light reflected from the portion of the wafer, and identifying one or more defects in the wafer based on the comparison.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: July 3, 2018
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Zoltan Tamas Kiss, Laszlo Dudas, Zsolt Kovacs, Imre Lajtos, Gyorgy Nadudvari, Nicolas Laurent, Lubomir L. Jastrzebski
  • Patent number: 10006761
    Abstract: The present invention is directed to a system and method for on-line real-time measuring the surface topography and out-of-plane deformation by using phase-shifting shadow moiré method. Digital Phase-Shifting Shadow Moiré Method is applied to a system, which receives the reflected images from the surface of transparent or non-transparent plate projected under a light beam passing through a grating. Next, by image correction program, the skewed interference fringe pattern is recovered to the image as if the image acquisition equipment is placed normal to the surface. Furthermore, the received images are processed with Phase-Shifting to show the surface topography of the plate.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: June 26, 2018
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Wei-Chung Wang, Wen-Yi Kang, Ya-Hsin Chang, Hsuan-Hao Hsu
  • Patent number: 10006868
    Abstract: The present invention relates to the method and device to determination of the properties of gemstones and more particularly evolution of gemstone by detection of internal and external structure of gemstone. In particular, the present invention methods and device is used to identify the size, location of impurities/defects in raw gemstone with the help of optimize spectroscopy scanning. The present invention method and device is used for precise automatic evolution of gemstones and possibilities (estimation) of final value of planned gemstone after remaining gemstone processing cycle.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: June 26, 2018
    Inventor: Arvindbhai Lavjibhai Patel
  • Patent number: 10006864
    Abstract: A carrier concentration measuring method and an apparatus thereof including a focuser, a spectrometer and a processor are disclosed. The measuring method includes the following steps. Project a laser beam to an object. Analyze a Raman signal, obtained from a radiation propagating from the object projected by the laser beam, to obtain a measurement result of the object. Analyze the measurement result to obtain an intensity ratio or a Raman shift. Look up a carrier concentration of the object in a database according to the intensity ratio or the Raman shift.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: June 26, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Cho-Fan Hsieh, Chih-Hua Chen, Ming-Han Liao
  • Patent number: 9995862
    Abstract: An optical filter includes: a first variable wavelength bandpass filter that can extract light of a first wavelength band (400 to 460 nm), the first wavelength band having a first spectral band having a central wavelength equal to a first wavelength in the first wavelength band and a second spectral band having a central wavelength equal to a second wavelength in the first wavelength band; and a second variable wavelength bandpass filter that can extract light of a second wavelength band (480 to 540 nm) adjacent to the first wavelength band, the second wavelength band having a third spectral band having a central wavelength equal to a third wavelength in the second wavelength band and a fourth spectral band having a central wavelength equal to a fourth wavelength in the second wavelength band.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: June 12, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Tomonori Matsushita, Tatsuo Urushidani
  • Patent number: 9995579
    Abstract: A tiltmeter to measure a variation in inclination of a structure from a given starting position. The tiltmeter has two pots, each pot contains an identical volume and identical height of an identical liquid. A communication device connects the two pots and allows the liquid to flow between the two pots by the principle of communicating vessels. Two optical measuring devices are provided, one optical measuring device per pot. Each optical measuring device measures a variation in height of the level of liquid in the associated pot. The optical measuring devices are fiber optic devices coupled to a common light source.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: June 12, 2018
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIC, UNIVERSITE DE MONTPELLIER
    Inventor: Frederick Boudin
  • Patent number: 9989455
    Abstract: A method of testing an electrode paste for producing an electrode for a secondary battery includes preparing an electrode paste obtained by kneading at least active material particles and water dispersible binder particles in an aqueous solvent; performing centrifugation on the electrode paste and collecting a supernatant containing the binder particles, and a free active material; and measuring an absorbance of the supernatant at an evaluation wavelength by using a spectrophotometer, wherein the evaluation wavelength is determined based on a relationship between an average particle size of the binder particles and the absorbance of the supernatant such that a proportion of an absorbance resulting from the binder particles in the absorbance of the supernatant becomes equal to or less than 30%, the relationship being determined in advance; and determining a quality of the electrode paste, based on the absorbance of the supernatant at the evaluation wavelength.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: June 5, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yusuke Onoda
  • Patent number: 9983364
    Abstract: An interferometric measurement method aims at calculating angular misalignment between fiber and ferrule axes for single fiber ferrules. The misalignment is measured by scanning side surface of reference fiber inserted into the ferrule and side surface of the ferrule. For single fiber connectors and ferrules, the method also aims at calculating fiber core concentricity and ferrule circularity and for single fiber connectors, end face angle of polish. The concentricity, the circularity and the angle of polish are measured by scanning side surface of the ferrule and end face of the connector or ferrule. Interferometric data from the side surfaces of the reference fiber and the ferrule, or from the end face of the connector or ferrule and the side surface of the ferrule, is gathered during one scanning session—either one simultaneous scan or several scans without moving or re-inserting the connector or ferrule.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: May 29, 2018
    Assignee: Sumix Corporation
    Inventors: Farhad Towfiq, Anton Korniienko, Yurii Yenko
  • Patent number: 9976845
    Abstract: A method for providing film-thickness analysis with a spectrophotometer includes configuring an illuminator to emit a light beam at a film deposited on a substrate surface, configuring a linear sensor to receive light reflecting off the deposited film on the substrate surface via a gradient index lens and a linear variable filter, and configuring a processor to determine thickness of the film based on spectral reflectivity of the film received from the linear sensor.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: May 22, 2018
    Assignee: XEROX CORPORATION
    Inventors: Paul S. Bonino, Robert P. Herloski, Jason M. LeFevre
  • Patent number: 9970863
    Abstract: Methods and systems for performing broadband spectroscopic metrology with reduced sensitivity to focus errors are presented herein. Significant reductions in sensitivity to focus position error are achieved by imaging the measurement spot onto the detector such that the direction aligned with the plane of incidence on the wafer surface is oriented perpendicular to the direction of wavelength dispersion on the detector surface. This reduction in focus error sensitivity enables reduced focus accuracy and repeatability requirements, faster focus times, and reduced sensitivity to wavelength errors without compromising measurement accuracy. In a further aspect, the dimension of illumination field projected on the wafer plane in the direction perpendicular to the plane of incidence is adjusted to optimize the resulting measurement accuracy and speed based on the nature of target under measurement.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: May 15, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Shankar Krishnan, Guorong V. Zhuang, David Y. Wang, Xuefeng Liu
  • Patent number: 9964464
    Abstract: An optical time domain reflectometer (OTDR) system with an integrated high speed optical modulator is capable of operating at a speed similar to the OTDR pulse width to improve the measurement resolution and reduce the time required to acquire a high dynamic range OTDR measurement over existing approaches. ASICs can be used to control the modulator and generation of pulses. The high-speed optical modulator enables high resolution single-photon OTDR measurement by blocking out all return light except from the region of fiber under examination.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: May 8, 2018
    Assignee: Ultra Communications, Inc.
    Inventors: Joseph F. Ahadian, Kris Kusumoto, Charles B. Kuznia