Patents Examined by Omar R Rojas
  • Patent number: 11852802
    Abstract: Disclosed herein are configurations for fiber optic endoscopes employing fixed distal optics and multicore optical fiber.
    Type: Grant
    Filed: February 19, 2022
    Date of Patent: December 26, 2023
    Inventor: Eric Swanson
  • Patent number: 11835770
    Abstract: An automated fiber optic rotary joint (FORJ) dynamically measures, using an angle encoder, twists in an optical fiber cable caused by movements of a mouse or other animal and automatically unwinds the optical fiber cable(s) by engaging a motor. To optimize its efficiency, the unwinding process is activated automatically only when the angle encoder reaches a predetermined threshold. In some embodiments, the optical fiber is unwound in increments of 360°. Various embodiments allow simultaneous transfer of optical signals through independent channels to and from multiple sites of a freely moving animal through a rotating interface and with minimal mechanical impact on the natural behavior of the animal. The design principle leads to a minimal variation of light transmission over rotation suitable for life science applications. A single channel FORJ device can be readily expanded to a two-, three- or more-channel device.
    Type: Grant
    Filed: January 24, 2021
    Date of Patent: December 5, 2023
    Assignee: ChiSquare Bioimaging LLC
    Inventors: Loling Song, Hendrik van Gorsel
  • Patent number: 11828977
    Abstract: An integrally molded multi-optical transmission sheet includes: a sheet-like coated portion formed of plastic; and a plurality of optical transmission regions having a core region formed of plastic, and a clad region formed of plastic and surrounding an outer periphery of the core region, which are provided inside the coated portion to extend along an extending direction of the coated portion, wherein the plurality of optical transmission regions are arranged in a row substantially parallel to each other along a main surface of the coated portion, and in a case where light is incident from one end face side of the plurality of optical transmission regions and transmitted toward the other end face side, a M2 value of emitted light is 1.7 or more.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: November 28, 2023
    Inventor: Yasuhiro Koike
  • Patent number: 11822127
    Abstract: An optical fiber filter has an ultra-wide tuning range and includes a two-dimensional mechanical rotating mirror, a collimating and beam expanding system, and two grating. An input fiber emits a multi-wavelength optical signal into the rotating mirror, which reflects the signal to the system to form collimated beams. In turn, the collimated beams are incident on the gratings that disperse the light of different wavelengths to different angles. Lights of different diffraction angles are input into an output fiber by adjusting the rotating mirror. The rotating mirror can be used to switch between gratings of different wavebands to tune optical wavelengths in an ultra-wide range.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: November 21, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Yongkang Hu, Ketang Tan
  • Patent number: 11822135
    Abstract: An optical interconnect may provide for optical communications between two IC chips. The optical interconnect may include an array of optoelectronic elements, for example microLEDs and photodetectors, with the array including a plurality of sub-arrays. A fiber bundle of optical fibers may couple the optoelectronic elements, and the fiber bundle may include a plurality of sub-bundles, with for example one sub-bundle for coupling pairs of sub-arrays. Fibers of each sub-bundle may be accurately positioned with respect to one another.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: November 21, 2023
    Assignee: Avicena Tech Corp.
    Inventors: Robert Kalman, Bardia Pezeshki, Alexander Tselikov
  • Patent number: 11808995
    Abstract: Structures for an edge coupler and methods of fabricating such structures. The structure includes a back-end-of-line stack located over a substrate. The back-end-of-line stack includes a waveguide core having a longitudinal axis and a tapered section with a width that varies with position along the longitudinal axis based on a non-linear function.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: November 7, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventor: Yusheng Bian
  • Patent number: 11809010
    Abstract: In one embodiment, a method of preparing a round fiber optic cable includes applying a cable orientation guide to a portion of the fiber optic cable. The fiber optic cable includes a jacket, a first strength member, a second strength member, and an optical fiber. The strength members and the optical fiber are disposed within the jacket along a strength axis. Applying the cable orientation guide rotates the fiber optic cable such that the strength axis is positioned along a preferential axis. The method further includes forming a punched area in the jacket. The method also include removing a portion of the jacket forward of the punched area to provide a flat end face defined by the punched area for attaching the cable to a retention body of a fiber optic connector.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: November 7, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Michael John Gimblet, Kristen Shea Harmon, Xin Liu, Radawan Ripumaree
  • Patent number: 11803023
    Abstract: An optical module includes a housing, a printed circuit board, an optical assembly, an optical interface joined with the optical assembly, the printed circuit board, the optical assembly, and the optical interface being disposed in the housing, an adapter to be mated with an external optical connector and disposed on an end of the housing, and first and second connecting part disposed on the adapter and the housing, respectively. The adapter and the housing are secured together through the first and second connecting parts. The optical interface and the adapter are configured to correspond to each other.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: October 31, 2023
    Assignee: INNOLIGHT TECHNOLOGY PTE. LTD.
    Inventors: Zhanwei Wang, Kewu Wang
  • Patent number: 11803015
    Abstract: An optical probe for optoelectronic integrated circuits is provided, applicable to a test environment for testing a plurality of optical chips on a wafer. The optical chips include at least one optical waveguide, and the optical probe includes a substrate and an optical fiber. The facet of the optical fiber has a first angle, and the first angle causes the optical signal transmitted by the optical fiber to generate total reflection, and the optical signal after total reflection enters the optical waveguide of the optical chip. Thereby, an optical probe able to perform testing before wafer cutting and polishing is provided, and a high-speed, effective and reliable detection is achieved.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: October 31, 2023
    Assignee: FOCI FIBER OPTIC COMMUNICATIONS, INC.
    Inventors: Ting-Ta Hu, Hsu-Liang Hsiao, Po-Yi Wu
  • Patent number: 11803016
    Abstract: Structures for an edge coupler and methods of fabricating such structures. The structure includes a substrate, a waveguide core, and a metamaterial layer positioned in a vertical direction between the substrate and the waveguide core. The metamaterial layer includes a plurality of elements separated by a plurality of gaps and a dielectric material in the plurality of gaps.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: October 31, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventor: Yusheng Bian
  • Patent number: 11796734
    Abstract: An optical waveguide is configured to guide an optical beam, and the optical waveguide includes a down-taper element configured to reduce a diameter of an incoming light beam having a random polarization; a dual-core directional coupler element configured to separate the incoming light beam into a horizontally-polarized beam and a vertically-polarized beam, each beam being confined in first and second cores, respectively; and a core fan-out element configured to increase a distance between the horizontally-polarized beam and the vertically-polarized beam upon exit from the core fan-out element. Each of the down-taper element, the dual-core directional coupler element, and the core fan-out element are 3-dimensional, 3D, printed using a single material.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: October 24, 2023
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Carlo Liberale, Andrea Bertoncini
  • Patent number: 11796744
    Abstract: An optical fiber ferrule polishing holder for suppressing difference of protruded lengths of optical fiber ferrules protruded from the optical fiber ferrule polishing holder and difference of angles of the optical fiber ferrules. Even when force is applied to cables connected to the optical fiber ferrules, polishing performance of connectors is less affected. An optical fiber ferrule polishing holder for holding an optical fiber ferrule incorporated in a connector, including: a holder body having a plate shape; and an adapter fixed to the holder body so that the connector is locked to the adapter, wherein the holder body includes an insertion hole into which the optical fiber ferrule is inserted, and an upper surface of the holder body presses the optical fiber ferrule at a peripheral position of the insertion hole to contract a spring built in the connector when the connector is locked to the adapter.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: October 24, 2023
    Assignee: SEIKOH GIKEN Co., Ltd.
    Inventor: Naoto Furuta
  • Patent number: 11789207
    Abstract: A device for attaching at least one optical fiber to a chip includes at least one nanowaveguide disposed on a substrate of a chip to be attached to an at least one off-chip fiber respectively. At least one oxide taper mode converter is disposed around a nanowaveguide end and in optical communication with and modally coupled to each of the at least one nanowaveguide respectively, and adapted such that each corresponding fiber of at least one off-chip fiber corresponds to a cleaved fiber end each cleaved fiber end to be fused to each oxide taper mode converter respectively to optically couple and mode match each cleaved fiber end to each of the nanowaveguide ends of each of the at least one nanowaveguide via the oxide taper mode converter by a modal coupling. A method for attaching at least one optical fiber to a chip is also described.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: October 17, 2023
    Assignee: University of Rochester
    Inventors: Jaime Cardenas, Juniyali Nauriyal
  • Patent number: 11754794
    Abstract: A semiconductor device includes a substrate. The semiconductor device further includes a waveguide on a first side of the substrate. The semiconductor device further includes a photodetector (PD) on a second side of the substrate, opposite the first side of the substrate. The semiconductor device further includes an optical through via (OTV) optically connecting the PD with the waveguide, wherein the OTV extends through the substrate from the first side of the substrate to the second side of the substrate.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Chung-Ming Weng, Tsung-Yuan Yu, Hui Yu Lee, Hung-Yi Kuo, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 11747556
    Abstract: An integrated circuit (IC) device includes an optical IC substrate, a local trench inside the optical IC substrate, and a photoelectronic element including a photoelectric conversion layer buried inside the local trench. The photoelectric conversion layer is buried inside the local trench in the optical IC substrate to form the photoelectronic element. Thus, the IC device may inhibit warpage of the optical IC substrate.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: September 5, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-hye Kim, Keun-yeong Cho, Ho-chul Ji
  • Patent number: 11747560
    Abstract: Disclosed is a photonic integrated circuit (PIC) structure including: a first waveguide with a first main body and a first end portion, which is tapered; and a second waveguide with a second main body and a second end portion, which has two branch waveguides that are positioned adjacent to opposing sides, respectively, of the first end portion of the first waveguide and that branch out from the second main body, thereby forming a V, U or similar shape. The arrangement of the two branch waveguides of the second end portion of the second waveguide relative to the tapered first end portion of the first waveguide allows for mode matching conditions to be met at multiple locations at the interface between the waveguides, thereby creating multiple signal paths between the waveguides and effectively reducing the light signal power density along any one path to prevent or at least minimize any power-induced damage.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: September 5, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Yusheng Bian, Roderick A. Augur
  • Patent number: 11747561
    Abstract: Apparatus and methods relating to coupling radiation from an incident beam into a plurality of waveguides with a grating coupler are described. A grating coupler can have offset receiving regions and grating portions with offset periodicity to improve sensitivity of the grating coupler to misalignment of the incident beam.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: September 5, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Kyle Preston, Shannon Stewman
  • Patent number: 11733456
    Abstract: An eyepiece for an augmented reality display system. The eyepiece can include a waveguide substrate. The waveguide substrate can include an input coupler grating (ICG), an orthogonal pupil expander (OPE) grating, a spreader grating, and an exit pupil expander (EPE) grating. The ICG can couple at least one input light beam into at least a first guided light beam that propagates inside the waveguide substrate. The OPE grating can divide the first guided light beam into a plurality of parallel, spaced-apart light beams. The spreader grating can receive the light beams from the OPE grating and spread their distribution. The spreader grating can include diffractive features oriented at approximately 90° to diffractive features of the OPE grating. The EPE grating can re-direct the light beams from the first OPE grating and the first spreader grating such that they exit the waveguide substrate.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: August 22, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Robert Dale Tekolste, William Hudson Welch, Eric C. Browy, Victor Kai Liu, Samarth Bhargava
  • Patent number: 11719884
    Abstract: An optical fiber alignment tool includes a fiber aligner that includes: separators that assort optical fibers; and fiber insertion portions each disposed between a respective pair of the separators and that align the optical fibers in an alignment direction in a predetermined order when the optical fibers are inserted into the fiber insertion portion; and a fiber holding portion that includes a mount surface on which the optical fibers are mounted. The fiber aligner and the fiber holding portion are relatively movable in the alignment direction of the optical fibers.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: August 8, 2023
    Assignee: Fujikura Ltd.
    Inventors: Thao Thi Thanh Nguyen, Junya Watanabe, Kunihiko Fujiwara
  • Patent number: 11714241
    Abstract: A highly scalable and modular automated optical cross connect switch devices which exhibit low loss and scalability to high port counts. A device for the programmable interconnection of large numbers of optical fibers (100s-1000s) is provided, whereby a two-dimensional array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array with tensioned fiber optic circuit elements tracing substantially straight lines there between. Fiber optic elements are terminated in a stacked arrangement of flexible fiber optic circuit elements with a capacity to retain excess fiber lengths while maintaining an adequate bend radius. The combination of these elements partitions the switch volume into multiple independent, non-interfering zones, which retain their independence for arbitrary and unlimited numbers of reconfigurations.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: August 1, 2023
    Assignee: TELESCENT INC.
    Inventor: Anthony Stephen Kewitsch