Patents Examined by Omar R Rojas
  • Patent number: 10429596
    Abstract: A support assembly including a handle on a top surface of an optical connector, side clips removably coupled to opposite sides of the handle, such that a clamping force is applied to opposite sides of the optical connector to prevent movement between the handle and the optical connector, and a bottom clip removably coupled to a bottom of the handle, the bottom clip including a flange to capture a pull table extending from a rear of the optical connector. An Active Optical Cable (AOC) connector support assembly including a handle, side clips secured to opposite sides of the handle, such that a clamping force is applied to the opposite sides of the AOC connector to prevent movement between the handle and the AOC connector; and a bottom clip secured to a bottom of the handle, the bottom clip including a flange to secure the AOC connector.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: October 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jesus Ernesto Ibarra Hernandez, Oscar E. Flores Pantoja
  • Patent number: 10429564
    Abstract: A flexible lightguide having at least one fused fiberoptic end secured within an end fitting with a layer of cushioning material sandwiched between the fused fiberoptic end and end fitting. The layer of cushioning material accommodates the differences in thermal expansion and contraction of the fused fiberoptic end and end fitting to prevent damage to the fused fiberoptic end such as during multiple cycling in an autoclave. As one example, the layer of cushioning material may be provided by wrapping the fused fiberoptic end with PTFE tape, thread seal tape, or the like.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: October 1, 2019
    Assignee: Sunoptic Technologies LLC
    Inventor: Antonio Galarza
  • Patent number: 10422948
    Abstract: An optical fiber includes a core, a depressed layer surrounding the core, and a cladding surrounding the depressed layer, where a refractive index profile of the core is an ? power distribution in which an index ? is 3 or more and 6 or less, a relative refractive index difference ?? of the depressed layer with respect to the adding is set such that an absolute value |??| thereof is 0.01% or more and 0.05% or less, a radius r1 of the core and an outer circumference radius r2 of the depressed layer are set such that a ratio r1/r2 thereof is 0.2 or more and 0.5 or less, a cable cutoff wavelength ?cc of 22 m is 1260 nm or less, and a mode field diameter MFD at a wavelength of 1310 nm is 8.6 ?m or more and 9.5 ?m or less.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 24, 2019
    Assignee: FUJIKURA LTD.
    Inventor: Ryo Maruyama
  • Patent number: 10422962
    Abstract: The present disclosure relates to a fiber optic connection system that uses a slide clip to provide robust retention of a fiber optic connector within a mating fiber optic adapter. In certain examples, the fiber optic connector may be a hybrid connector that provides both electrical and optical connectivity.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: September 24, 2019
    Assignee: CommScope Connectivity Belgium BVBA
    Inventor: Philippe Coenegracht
  • Patent number: 10420460
    Abstract: An illumination probe may include a handle, an optic fiber, a tube, and an illumination source connector. The tube may include a tube distal end and a tube proximal end. The tube may include a tube aperture of the tube distal end. The tube proximal end may be disposed in the handle wherein the tube distal end extends out from a distal end of the handle. The optic fiber may include an optic fiber distal end and an optic fiber proximal end. The optic fiber may be disposed in the illumination source connector, the handle, and the tube wherein the optic fiber distal end is disposed in the tube. The tube aperture may be configured to modify a property of incident illumination light.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: September 24, 2019
    Assignee: KATALYST SURGICAL, LLC
    Inventor: Gregg D Scheller
  • Patent number: 10422949
    Abstract: An optical fiber includes a core, a depressed inner cladding surrounding the core, and an outer cladding surrounding the inner cladding, where a refractive index profile of the core includes an ? power distribution in which an index ? is 3.5 or more and 6 or less, a relative refractive index difference ?? of the inner cladding with respect to the adding is set such that an absolute value |??| thereof is 0.01% or more and 0.045% or less, a radius r1 of the core and an outer circumference radius r2 of the inner cladding are set such that a ratio r1/r2 thereof is 0.2 or more and 0.6 or less, a cable cutoff wavelength ?cc of 22 m is 1260 nm or less, and a mode field diameter MFD at a wavelength of 1310 nm is 8.6 ?m or more and 9.5 ?m or less.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 24, 2019
    Assignee: FUJIKURA LTD.
    Inventor: Ryo Maruyama
  • Patent number: 10416393
    Abstract: Various embodiments are directed to a connector for coupling optical signals to a semiconductor device. In one embodiment, the connector includes a connector member having a recessed portion to arrange a plurality of waveguides formed side-by-side in a transverse direction. A backup member is arranged within the recessed portion interposing the plurality of waveguides between the connector member and the backup member. The recessed portion includes a plurality of ridges arranged in a staggered pattern relative to the plurality of waveguides for positioning the plurality of waveguides relative to the connector.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Yoichi Taira
  • Patent number: 10409014
    Abstract: A photonic integrated circuit (PIC) package includes a PIC die including electro-optical circuitry having an optical waveguide system therein and a V-groove fiber optic receptacle on a first surface thereof. The V-groove fiber optic receptacle positions an optical element, e.g., optical fiber(s), for optical coupling with the optical waveguide system. An optical element is operatively coupled to the optical waveguide system and positioned in the V-groove fiber optic receptacle. A magnetic force inducer (MFI) is positioned to forcibly direct the optical element into position in the V-groove fiber optic receptacle in response to application of a magnetic field from a direction opposite the V-groove fiber optic receptacle in the first surface. During assembly, a magnetic field may be applied to the MFI to generate the magnetic force. After adhering the optical element, the magnetic field may remain to allow the PIC package to be moved with more security.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: September 10, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Koushik Ramachandran, Benjamin V. Fasano
  • Patent number: 10386589
    Abstract: The present invention relates to a hybrid connector. The connector comprises an insulating housing having parallel rows of first and second terminals disposed in the housing. Each first and second terminal includes a terminal portion configured to make contact with an electrically conductive trace of a circuit board; and a mating portion configured to contact a terminal of a mating connector, the mating portions of the first terminals parallel to and facing the mating portions of the second terminals. The housing defines a cavity formed therein between the mating portions of the first and second terminals, wherein the cavity defining a cavity opening at an external surface of the housing for receiving light therefrom. An optical relay portion is disposed in the cavity, wherein the optical relay portion comprises at least one of an optical transceiver, an optical lens and an optical waveguide.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: August 20, 2019
    Assignee: 3M Innovation Properties Company
    Inventors: Terry L. Smith, Saujit Bandhu, YunLong Qiao, Chin Hua Lim, Barry J. Koch
  • Patent number: 10382838
    Abstract: Example management closures (110) enable incoming optical and/or electrical signals to be connected to one or more subscribers (109) via an electrical distribution cable (102). Termination connections within the management closure (110) are connected to active electronic equipment (131) for modifying and/or enhancing the incoming signals. However, the connections between the central office (101), the active electronic equipment (131), and a subscriber (109) need not be made until the subscriber requests a service upgrade. Accordingly, the closure (110) allows for simple and low cost installation of the closure (110) before upgraded service is needed.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: August 13, 2019
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Gerd Van Cauteren, Dirk Kempeneers, Jan Jozef De Rijck
  • Patent number: 10371916
    Abstract: An optical fiber pathway duct comprises a first channel configured to receive a pulling mechanism, and a second channel configured to allow one of a pullable connector and a stub end coupled to an optical fiber cable to pass through the optical pathway duct. The optical fiber pathway duct further comprises a slot disposed between the first channel and the second channel and configured to allow a pulling eye of one of the pullable connector and the stub end coupled to the pulling mechanism to pass through the optical pathway duct.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: August 6, 2019
    Assignee: Clearfield, Inc.
    Inventors: John Paul Hill, William J. Cruzen
  • Patent number: 10371911
    Abstract: An optical fiber cord includes: a multi-fiber cord section that includes an outer cover that encloses an optical fiber unit where a plurality of coated optical fibers are gathered; a plurality of branch cord sections where the coated optical fibers are housed in branch tubes; and a branch protection section that includes an exterior member that covers a branch portion where the plurality of coated optical fibers are branched from the multi-fiber cord section toward the branch cord sections.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: August 6, 2019
    Assignee: FUJIKURA LTD.
    Inventors: Katsushi Agata, Norihiro Momotsu
  • Patent number: 10371907
    Abstract: An optical structure includes a substrate including a cavity on a first surface of the substrate, an optical component on the substrate and an adhesive applied to a side of the optical component to fix the optical component to the substrate. The optical component includes a recess on a second surface of the optical component, the second surface is opposed to the first surface of the substrate, and the recess is provided along an edge of the second surface.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventors: Elaine Cyr, Paul F. Fortier, Takashi Hisada, Patrick Jacques, Koji Masuda, Masao Tokunari
  • Patent number: 10359583
    Abstract: A behind-the-wall optical connector an outer housing configured to be inserted into an adapter with a corresponding inner surface, a ferrule included in an annular collar to mate with a corresponding projection at an adapter opening, and a latch attached to one side of housing configured to lock the connecter into an adapter opening. The latch is further configured with a locking channel and guide to accept a pull tab with a catch at one end, the pull tab releases the connector from the adapter opening when the tab is pulled rearward or away from the adapter.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: July 23, 2019
    Assignee: Senko Advanced Components, Inc.
    Inventors: Jimmy Jun-Fu Chang, Kazuyoshi Takano
  • Patent number: 10359588
    Abstract: An optical waveguide device comprising: one or more photonic chips, the one or more photonic chips including: a first portion of a photonic chip comprising an array of first components, each of the first components having an optical input and an electrical output; and a second portion of a photonic chip comprising an array of second components, each of the second components configured to receive an electrical input; the optical waveguide device further comprising: an integrated circuit; the integrated circuit forming an electrical bridge between the electrical outputs of the first components and respective electrical inputs of the second components; wherein the integrated circuit is directly mounted onto the one or more photonic chips; and/or wherein the integrated circuit is located between the first portion of a photonic chip and the second portion of a photonic chip.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: July 23, 2019
    Assignee: Rockley Photonics Limited
    Inventors: Andrew Rickman, Guomin Yu, Aaron Zilkie, Haydn F. Jones
  • Patent number: 10353148
    Abstract: A mode converter provided in the present invention includes an input multimode waveguide, an output multimode waveguide, and a first conversion waveguide, where the input multimode waveguide is configured to receive a first signal which mode is a first mode; the first conversion waveguide has an input coupling waveguide with a first effective refractive index, and has an output coupling waveguide with a second effective refractive index; the first conversion waveguide is configured to perform, by using the input coupling waveguide, evanescent wave coupling on the first signal that is in the first mode and that is transmitted in the input multimode waveguide, and couple the first signal to the second mode of the output multimode waveguide by using the output coupling waveguide, so as to obtain the first signal in the second mode; and the output multimode waveguide is configured to output the first signal in the second mode.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 16, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Fei Zhao, Xin Tu
  • Patent number: 10348059
    Abstract: A light emitting element array includes plural semiconductor stacking structures and a light screening portion. The plural semiconductor stacking structures each include a light emitting portion and a light receiving portion that receives light propagated in a lateral direction via a semiconductor layer from the light emitting portion. The light screening portion is provided between the plural semiconductor stacking structures to screen light directed from the light emitting portion of one of the semiconductor stacking structures to the light receiving portion of another semiconductor stacking structure.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: July 9, 2019
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Junichiro Hayakawa, Akemi Murakami, Takashi Kondo, Naoki Jogan, Jun Sakurai
  • Patent number: 10321811
    Abstract: An optical transmission module includes a substrate having an opening portion; an optical element closing an opening on the lower surface side of the substrate and converting an electric signal into an optical signal or the optical signal into the electric signal; an optical fiber transmitting the optical signal; a ferrule closing an opening on the upper surface side of the substrate and having an optical fiber insertion hole; and a resin filled into a space surrounded at least by the substrate, the optical element, the ferrule, and a distal end of the optical fiber, wherein the ferrule has a resin filling hole spaced apart from the optical fiber insertion hole to fill the space with the resin, and an angle formed by an axis of the optical fiber insertion hole and an axis of the resin filling hole is equal to or more than 0° and less than 90°.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: June 18, 2019
    Assignee: OLYMPUS CORPORATION
    Inventor: Hiroshi Iwaisako
  • Patent number: 10317624
    Abstract: A method of manufacturing a monolithic array of lenslets that inject light into waveguides without the need for alignment of a separate lenslet array and waveguide array is provided. The waveguide array may be incorporated as a monolithic or fused piece with the substrate on which the lenslet array is to be written. A method of producing a flat, thin monolithic collimator array having a form corresponding to that of a PIC, with the input/output lenslet array located on the top surface of the collimator array is provided. A method for bonding a two-dimensional (2-D) array of lenslets on top of a photonic integrated circuit (PIC) substrate with a small gap for thermal expansion between lenslet blocks is provided.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: June 11, 2019
    Assignee: Lockheed Martin Coporation
    Inventors: Chad E. Ogden, Guy Chriqui
  • Patent number: 10295773
    Abstract: A fiber optic cassette includes structural features that maintain segregation between incoming and outgoing optical fibers. A dividing wall and a set of splice holders within the cassette together define two separate chambers within the cassette. Cable entry openings on the rear end of the cassette are configured to receive fiber optic cables into the rear chamber defined by the dividing wall and the splice holders. The front chamber is configured to hold patching fibers that interface with fiber optic adapters on the front of the cassette. The patching fibers and incoming optical fibers can be spliced as needed, and the splices held in place by the splice holders. This arrangement ensures that the incoming optical fibers from the fiber optic cable and the patching fibers remain segregated, such that the splice points are the only points of contact between the two sets of fibers.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: May 21, 2019
    Assignee: Leviton Manufacturing Co., Inc.
    Inventors: James Leonard, Jonathon Marks