Patents Examined by Pamela E Perkins
  • Patent number: 8263452
    Abstract: A semiconductor device has an n-channel MIS transistor and a p-channel MIS transistor on a substrate. The n-channel MIS transistor includes a p-type semiconductor region formed on the substrate, a lower layer gate electrode which is formed via a gate insulating film above the p-type semiconductor region and which is one monolayer or more and 3 nm or less in thickness, and an upper layer gate electrode which is formed on the lower layer gate electrode, whose average electronegativity is 0.1 or more smaller than the average electronegativity of the lower layer gate electrode. The p-channel MIS transistor includes an n-type semiconductor region formed on the substrate and a gate electrode which is formed via a gate insulating film above the n-type semiconductor region and is made of the same metal material as that of the upper layer gate electrode.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Reika Ichihara, Yoshinori Tsuchiya, Hiroki Tanaka, Masato Koyama
  • Patent number: 8263465
    Abstract: Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, a coupling layer such as an amino functional silane group is provided on a gate oxide layer on a substrate. The substrate is dip coated in a colloidal solution having metal nanodots, causing the nanodots to attach to sites in the coupling layer. The coupling layer is then dissolved such as by rinsing or nitrogen blow drying, leaving the nanodots on the gate oxide layer. The nanodots react with the coupling layer and become negatively charged and arranged in a uniform monolayer, repelling a deposition of an additional monolayer of nanodots. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: September 11, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, George Matamis, Takashi Orimoto, James Kai, Tuan D. Pham
  • Patent number: 8247250
    Abstract: An object is to uniformly align liquid crystal molecules without requiring a step of forming an alignment film. A material for forming a self-assembled monolayer is dispersed in a liquid crystal material, and the mixture is interposed between a pair of substrates by a liquid crystal injection method or a liquid crystal dropping method. A silane coupling agent (the material for forming a self-assembled monolayer) injected or dropped with the liquid crystal material adsorbs to a substrate interface (or a surface of an electrode formed over a substrate) after the injection or dropping, thereby forming a self-assembled monolayer. This self-assembled monolayer serves as an alignment film, and enables long axes of liquid crystal molecules to be approximately perpendicular to a substrate and the liquid crystal molecules to be uniformly aligned.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: August 21, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daisuke Kubota, Takeshi Nishi, Akio Yamashita
  • Patent number: 8242602
    Abstract: A method includes providing a mixture of molten indium and molten aluminum, and agitating the mixture while reducing its temperature until the aluminum changes from liquid phase to solid phase, forming particles distributed within the molten indium. Agitation of the mixture sufficiently to maintain the aluminum substantially suspended in the molten aluminum continues while further reducing the temperature of the mixture until the indium changes from a liquid phase to a solid phase. A metallic composition is formed, including indium and particles of aluminum suspended within the indium, the aluminum particles being substantially free from oxidation. The metallic (solder) composition can be used to form an assembly, including an integrated circuit (IC) device, at least a first thermal component disposed adjacent to the IC device, and a solder TIM interposed between and thermally coupled with each of the IC device and the first thermal component.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: August 14, 2012
    Assignee: Intel Corporation
    Inventors: Tom Fitzgerald, Carl Deppisch, Fay Hua
  • Patent number: 8232114
    Abstract: A semiconductor substrate has a plurality of active device patterns. At least some of the active device patterns comprise doped regions. The substrate has a plurality of surface regions, including the active device patterns and un-patterned regions, with respectively different reflectances for light in a near infrared wavelength. A first difference is determined, between a largest reflectance at the near infrared wavelength and a smallest reflectance at the near infrared wavelength. A second infrared wavelength is determined, for which a second difference between a largest reflectances a smallest reflectance is substantially less than the first difference at the near infrared wavelength. A rapid thermal processing (RTP) spike annealing dopant activation step is performed on the substrate using a second light source providing light at the second wavelength.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: July 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Ming Lin, Chung-Ru Yang, Chi-Ming Yang
  • Patent number: 8227325
    Abstract: An article includes a polycrystalline semiconductor layer having a plurality of single crystal crystallites of semiconductor material and a substrate having a melting or softening point of <200° C. supporting the semiconductor layer. An average grain size of the plurality of single crystal crystallites is less at an interface proximate to the substrate as compared to an average grain size in the semiconductor layer remote from the interface. The semiconductor layer is fused exclusive of any bonding agent or intermediate layer to the surface of the substrate.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: July 24, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Sachin Bet, Aravinda Kar
  • Patent number: 8227275
    Abstract: A method to form a an LD with the buried mesa type is disclosed, in which the n-type current blocking layer is stably kept with a distance to the active layer in the buried mesa. The method of the invention includes a step to form the mesa by iterating the RIE and the ashing to obtain in a mesa side a steep edge with the (110) surface. A wet-etching process subsequent to the iterative etching and ashing removes residuals left on the mesa side. Then, the growth of the current blocking layer shows two modes of the horizontal growth of the (110) surface and the vertical growth of the (001) surface comparably.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 24, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tomokazu Katsuyama
  • Patent number: 8222097
    Abstract: It is an object to form a conductive region between a front surface and a rear surface of an insulating film without forming contact holes in the insulating film.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 17, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuya Hanaoka, Miki Suzuki
  • Patent number: 8222082
    Abstract: A technique is provided which allows a chip mounted by wire bonding and a chip mounted by bump electrodes to share a manufacturing process. Both in a case where a chip is electrically coupled to an external circuit by bump electrodes and a case where the chip is electrically coupled to the external circuit by bonding wires, a bump coupling part and a bonding pad are both provided in a single uppermost wiring layer. When the bump electrodes are used, an opening is provided in an insulating film on the bump coupling part and a surface of the bonding pad is covered with the insulating film. On the other hand, when the bonding wires are used, an opening is provided in an insulating film on the bonding pad and a surface of the bump coupling part is covered with the insulating film.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: July 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Niichi Ito, Tetsuji Nakamura, Takamitsu Nagaosa, Hisashi Okamura
  • Patent number: 8216887
    Abstract: Various semiconductor chip packages and methods of assembling and making the same are disclosed. In one aspect, a method of manufacturing is provided that includes coupling a stiffener frame to a first side of a substrate. The stiffener frame has a central opening to accommodate a semiconductor chip and an outer edge surface. A semiconductor chip is coupled to the first side in the opening. A lid is coupled to the stiffener frame with an adhesive. The lid has a first edge surface set back from the outer edge surface of the stiffener frame. The adhesive is set back from the outer edge surface of the stiffener frame.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 10, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Stephen F. Heng, Sanjay Dandia, Chia-Ken Leong
  • Patent number: 8217512
    Abstract: A thermal interface device (100) includes a base member (102) and a pocket (104) which is filled with a thermally conductive material or medium such as diamond dust suspended in a solvent such as propylene glycol or a thermally conductive material such as thermally conductive rubber. The pocket (104) is hermitically sealed to the base member (102) in order to keep the thermally conductive material within the pocket. The filled pocket (104) forms a deformable “pillow” having a high thermal conductance. The deformable pocket (104) can contour to the shape of a device it is pressed against such as an electronic device undergoing testing.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: July 10, 2012
    Assignee: EADS North America, Inc.
    Inventors: Gary Carlson, Frank Landon, Jeffrey Chen, Mark Minot, Joseph Talbert
  • Patent number: 8212253
    Abstract: A semiconductor structure comprises a gate stack in a semiconductor substrate and a lightly doped source/drain (LDD) region in the semiconductor substrate. The LDD region is adjacent to a region underlying the gate stack. The LDD region comprises carbon and an n-type impurity, and the n-type impurity comprises phosphorus tetramer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: July 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Feng Nieh, Keh-Chiang Ku, Nai-Han Cheng, Chi-Chun Chen, Li-Te S. Lin
  • Patent number: 8207052
    Abstract: There is provided a method of fabrication an integrated circuit comprising providing a substrate with a bond pad formed thereover, the bond pad having a top surface for the formation of bonding connections. A passivation layer is provided over the bond pad followed by an overlying masking layer. The passivation layer is subsequently etched in accordance with the masking layer to form a patterned passivation layer with an opening that exposes a portion of the top surface of the bond pad. After etching the passivation layer, the mask layer is removed by a plasma resist strip followed by a wet solvent clean that removes etch residue from the passivation layer etch. Finally, a bond pad protective layer is grown over the surface of the bond pad. The bond pad may be composed of aluminum and the bond pad protective layer may be aluminum oxide.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: June 26, 2012
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Younan Hua, Shailesh Redkar
  • Patent number: 8207033
    Abstract: Methods of fabricating semiconductor integrated circuit devices are provided. A substrate is provided with gate patterns formed on first and second regions. Spaces between gate patterns on the first region are narrower than spaces between gate patterns on the second region. Source/drain trenches are formed in the substrate on opposite sides of the gate patterns on the first and second regions. A first silicon-germanium (SiGe) epitaxial layer is formed that partially fills the source/drain trenches using a first silicon source gas. A second SiGe epitaxial layer is formed directly on the first SiGe epitaxial layer to further fill the source/drain trenches using a second silicon source gas that is different from the first silicon source gas.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: June 26, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-Sun Kim, Hwa-Sung Rhee, Ho Lee, Ji-Hye Yi
  • Patent number: 8207067
    Abstract: A surface component film (2) is etched using a resist (3) as a mask, and the surface component film (2) is patterned according to the shape of an aperture (3a). This results in a step portion (4) having the same shape as the aperture (3a), with the sidewall (4a) of the step portion (4) exposed through the aperture (3a). The aperture (3a) is spin-coated with a shrink agent, reacted at a first temperature, and developed to shrink the aperture (3a). To control the shrinkage with high accuracy, in the first round of reaction, the aperture is shrunk by, for example, about half of the desired shrinkage. The aperture (3a) is further spin-coated with a shrink agent, reacted at a second temperature, and developed to shrink the aperture (3a). In this embodiment, the second-round shrink process will result in the desired aperture length. The second temperature is adjusted based on the shrinkage in the first round.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 26, 2012
    Assignee: Fujitsu Limited
    Inventors: Kozo Makiyama, Ken Sawada
  • Patent number: 8198118
    Abstract: A mask and method for forming the same including carrying out a photolithographic patterning process the method including providing a substantially light transparent portion; forming a substantially light shielding layer disposed over the substantially light transparent portion; forming at least one barrier layer disposed over the substantially light shielding layer; forming a resist layer disposed over the at least one barrier layer; patterning the resist layer for producing a circuitry pattern; and, carrying out an etching process according to the circuitry pattern to expose a portion of the substantially light transparent portion to form a mask.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: June 12, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co.
    Inventors: Ken Wu, Hung-Chang Hsieh, Chang-Cheng Hung, Luke Hsu, Ren-Guey Hsieh, Hsin-Chang Lee, Chia-Jen Chen
  • Patent number: 8187979
    Abstract: Methods to texture or fabricate workpieces are disclosed. The workpiece may be, for example, a solar cell. This texturing may involve etching or localized sputtering using a plasma where a shape of a boundary between the plasma and the plasma sheath is modified with an insulating modifier. The workpiece may be rotated in between etching or sputtering steps to form pyramids. Regions of the workpiece also may be etched or sputtered with ions formed from a plasma adjusted by an insulating modifier and doped. A metal layer may be formed on these doped regions.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: May 29, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Deepak A. Ramappa, Ludovic Godet
  • Patent number: 8173549
    Abstract: A first mask layer pattern including a plurality of parallel line portions is formed on an etch target layer on a semiconductor substrate. A sacrificial layer is formed on the first mask layer pattern and portions of the etch target layer between the parallel line portions of the first mask layer pattern. A second mask layer pattern is formed on the sacrificial layer, the second mask layer pattern including respective parallel lines disposed between respective adjacent ones of the parallel line portions of the first mask layer pattern, wherein adjacent line portions of the first mask layer pattern and the second mask layer pattern are separated by the sacrificial layer. A third mask layer pattern is formed including first and second portions covering respective first and second ends of the line portions of the first mask layer pattern and the second mask layer pattern and having an opening at the line portions of the first and second mask layer patterns between the first and second ends.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: May 8, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-ho Lee, Jae-hwang Sim, Jae-kwan Park, Jong-min Lee, Mo-seok Kim, Hyon-woo Kim
  • Patent number: 8173537
    Abstract: Stability of an underlying dielectric diffusion barrier during deposition and ultraviolet (UV) processing of an overlying dielectric layer is critical for successful integration. UV-resistant diffusion barrier layers are formed by depositing the layer in a hydrogen-starved environment. Diffusion barrier layers can be made more resistant to UV radiation by thermal, plasma, or UV treatment during or after deposition. Lowering the modulus of the diffusion barrier layer can also improve the resistance to UV radiation.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 8, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Kaushik Chattopadhyay, Keith Fox, Tom Mountsier, Hui-Jung Wu, Bart van Schravendijk, Kimberly Branshaw
  • Patent number: 8163647
    Abstract: An electronic device having a structure of an ohmic connection to a carbon element cylindrical structure body, wherein a metal material is positioned inside the junction part of a carbon element cylindrical structure body joined to a connection objective and the carbon element cylindrical structure body and the connection objective are connected by an ohmic contact. Methods for producing such an electronic device are also disclosed. Further, a method for growing a carbon nanotube is disclosed.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 24, 2012
    Assignee: Fujitsu Limited
    Inventors: Akio Kawabata, Mizuhisa Nihei