Patents Examined by Phillip Johnston
  • Patent number: 10617889
    Abstract: A particle beam detector system can comprise a particle beam generator, a particle beam fluence and position detector array based on Micromegas technology, and data readout electronics coupled to the position detector array. The particle beam fluence and position detector array can comprise a sealed, gas-filled, ionizing radiation detector chamber. A printed circuit board (PCB) can be disposed within the ionizing radiation detector chamber, the PCB comprising a multi-layer array arrangement of interconnected conductive sensor pads comprising three planar coordinate grids, X, Y, and ST (stereo) situated on separate layers of the PCB. The multi-layer array arrangement of interconnected conductive sensor pads can comprise a first footprint. A dielectric lattice structure can be disposed over the PCB and the multi-layer array arrangement of sensors. A conductive mesh structure can comprise a second footprint disposed over the dielectric lattice structure and extending over an entire area of the first footprint.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 14, 2020
    Assignee: RADIATION DETECTION AND IMAGING TECHNOLOGIES, LLC
    Inventor: Evgeny Galyaev
  • Patent number: 10622202
    Abstract: The invention generally relates to ion traps that operate by applying an inverse Mathieu q scan. In certain embodiments, the invention provides systems that include a mass spectrometer having an ion trap and a central processing unit (CPU). The CPU includes storage coupled to the CPU for storing instructions that when executed by the CPU cause the system to apply an inverse Mathieu q scan to the ion trap.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: April 14, 2020
    Assignee: Purdue Research Foundation
    Inventors: Robert Graham Cooks, Dalton Snyder
  • Patent number: 10615018
    Abstract: Certain embodiments described herein are directed to collision cells that comprise one or more integrated lenses. In some examples, a lens is coupled to two sections of a sectioned quadrature rod assembly, the lens comprising an aperture and a plurality of separate conductive elements disposed each one side of the lens, in which a respective disposed conductive element on one side of the lens is configured to electrically couple to a first, second, third, and fourth pole segments of the sectioned quadrature rod assembly.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 7, 2020
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventor: Urs Steiner
  • Patent number: 10614922
    Abstract: Techniques, systems, and devices are disclosed for non-invasive monitoring and imaging of nuclear fuel inside a nuclear reactor using muon detector arrays. In one aspect, these detector arrays are placed outside the reactor vessel or building for investigating the reactors without access to the cores, therefore the imaging process is non-invasive. In some implementation, these detector arrays measure both muon scattering and absorption to enable imaging and characterizing not only the very high-Z fuel materials, but also other materials in the reactor, thereby obtaining a more complete picture of reactor status. When applied to damaged reactors, the disclosed proposed techniques, systems, and devices, through the process of providing an image, can reveal the presence (or absence) of damage to fuel rod assemblies or puddles of molten fuel at the bottom of the containment vessel, thus providing crucial information to guide decisions about remedial actions.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: April 7, 2020
    Assignee: Decision Sciences International Corporation
    Inventors: Edward Casteel Milner, Konstantin N. Borozdin, Christopher L. Morris, Haruo Miyadera, John Oliver Perry
  • Patent number: 10607810
    Abstract: The vibration control system configured to control vibration of a vibration-controlled object is disclosed. The vibration control system comprises: (i) actuator units each including a piezoelectric element configured to expand and contract; (ii) a drive power source configured to supply drive voltages to the piezoelectric elements of the actuator units for causing the piezoelectric elements to expand and contract; (iii) a vibration detector configured to detect a status of vibration of the vibration-controlled object; and (iv) a vibration controller configured to control the vibration of the vibration-controlled object by controlling the voltages supplied by the drive power source to the piezoelectric elements of the actuator units based on the status of vibration detected by the vibration detector, respectively.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: March 31, 2020
    Assignee: NuFlare Technology, Inc.
    Inventors: Michihiro Kawaguchi, Kiminobu Akeno, Kiyoshi Nakaso, Keita Ideno, Shintaro Yamamoto, Keisuke Goto, Hitoshi Matsushita, Hirokazu Yoshioka, Ryouta Inoue, Yuuki Fukuda
  • Patent number: 10605827
    Abstract: Described is a device for use in scanning probe microscopy and to a method for manufacturing same. The metallic device has a single body with two parts, wherein the second part has a submicrometric point that defines a nanoscale apex. Also provided is a method for manufacturing a high optical efficiency probe for scanning probe microscopy.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 31, 2020
    Assignees: UNIVERSIDADE FEDERAL DE MENAS GERAIS-UFMG, INSTITUTO NACIONAL DE METROLOGIA QUALIDADE E TECHNOLOGIA-IMMETRO
    Inventors: Thiago De Lourenço E Vasconcelos, Bruno Santos De Oliveira, Carlos Alberto Achete, Braulio Soares Archanjo, Ado Jorio De Vasconcelos, Luiz Gustavo De Oliveira Lopes Cançado, Wagner Nunes Rodrigues, Caroline Arantes Da Silva Wetzstein, Rogerio Valaski, Cassiano Rabelo E Silva
  • Patent number: 10606180
    Abstract: Methods and apparatus for in-situ incline cleaning an element disposed in a EUV generating chamber are disclosed. A capillary-based hydrogen radical generator is employed to form hydrogen radicals from hydrogen gas. The capillary-based hydrogen radical generator is resistively heated during operation and is oriented such that hydrogen radicals catalytically generated from the hydrogen gas are directed to a surface of the element to clean the surface.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: March 31, 2020
    Assignee: ASML NETHERLANDS B.V.
    Inventor: Marc Guy Langlois
  • Patent number: 10600616
    Abstract: In one embodiment, an apparatus to treat a substrate may include an extraction plate to extract a plasma beam from a plasma chamber and direct the plasma beam to the substrate. The plasma beam may comprise ions forming a non-zero angle of incidence with respect to a perpendicular to a plane of the substrate; and a gas outlet system disposed outside the plasma chamber, the gas outlet system coupled to a gas source and arranged to deliver to the substrate a reactive gas received from the gas source, wherein the reactive gas does not pass through the plasma chamber.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: March 24, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Shurong Liang, Costel Biloiu, Glen Gilchrist, Vikram Singh, Christopher Campbell, Richard John Hertel, Alex Kontos
  • Patent number: 10589025
    Abstract: The present disclosure relates generally to the field of drug delivery. In particular, the present disclosure relates to a drug delivery system that includes a sealed and sterile fluid path attached to a drug-loaded container. The disclosure further relates to methods for sterilizing a portion of the drug delivery system without exposing the drug-loaded container to harmful sterilization parameters.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: March 17, 2020
    Assignee: INSULET CORPORATION
    Inventor: Ian McLaughlin
  • Patent number: 10580632
    Abstract: In a mass spectrometer or gas chromatograph/mass spectrometer system, one or more different conditioning gases are added to condition or modify one or more surfaces or regions of the ion source. The conditioning gas(es) may be added directly into the ion source. The conditioning gas may be added off-line, when the mass spectrometer is not analyzing a sample.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: March 3, 2020
    Assignee: Agilent Technologies, Inc.
    Inventors: Harry F. Prest, Charles W. Russ, IV
  • Patent number: 10580614
    Abstract: Mask-modulated spectra are incident to a sensor and are summed during a frame time. After the frame time, a compressed spectrum is read out based on the sum and decompressed to obtain spectra for some or all specimen locations. The mask-modulated spectrum that are summed are associated with different modulations produced by a common mask.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 3, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Andrew J. Stevens, Libor Kovarik, Nigel D. Browning
  • Patent number: 10573489
    Abstract: A charged particle beam device includes a charged particle source which emits a charged particle beam radiated on a sample; a condenser lens system which has at least one condenser lens focusing the charged particle beam at a predetermined demagnification; a deflector which is positioned between a condenser lens of a most downstream side and a charged particle source in the condenser lens system, and moves a virtual position of the charged particle source; and a control unit which controls the deflector and the condenser lens system. The control unit controls the deflector to move the virtual position of the charged particle source to a position of suppressing a deviation, which is caused by a change of the demagnification of the condenser lens system, of a center trajectory of the charged particle beam in the downstream of the condenser lens system.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: February 25, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Shuhei Yabu
  • Patent number: 10564136
    Abstract: A liquid sample analyzing system including an ion analyzer having a first ion source receiving a target sample and a second ion source receiving a reference sample; a liquid sample introduction mechanism 3 including a passage-switching section introducing reference samples into the second ion source; and a controller for repeatedly performing a series of steps in the ion analyzer, the steps including: a pre-measurement step for initiating a measurement; a measurement step for introducing a target sample into the first ion source and performing a measurement on an ion originating from the target sample along with an ion originating from a reference sample introduced into the second ion source by the liquid sample introduction mechanism; and a post-measurement step where the liquid sample introduction mechanism operates concurrently with the predetermined post-measurement step to switch the passage-switching section to a passage having a reference sample for the next analysis.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: February 18, 2020
    Assignee: SHIMADZU CORPORATION
    Inventor: Kazuma Maeda
  • Patent number: 10559408
    Abstract: Feedthrough device (50; 150), for forming a hermetic seal around signal conductors in a signal conductor group (60; 160) with a group width. The device comprises a slotted member (52; 152) and a base (62; 162). The base defines a through hole (65) that extends entirely through the base along a feedthrough direction (X), and is adapted to accommodate the slotted member. The slotted member defines first and second surfaces (53, 54; 153, 154) on opposite sides associated with the feedthrough direction, and a side surface (55, 56; 155, 156) facing transverse to the feedthrough direction. The slotted member comprises a slot (58; 158), which extends along the feedthrough direction through the slotted member, and opens into the first and second surfaces and into a longitudinal opening (59; 159) along the side surface. The slot extends transversely into the slotted member up to a slot depth at least equal to the signal conductor group width.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: February 11, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Johannes Petrus Sprengers, Christiaan Otten
  • Patent number: 10559392
    Abstract: A system and method for controlling particles using projected light are provided. In some aspects, the method includes generating a beam of light using an optical source, and directing the beam of light to a beam filter comprising a first mask, a first lens, a second mask, and a second lens. The method also includes forming an optical pattern using the beam filter, and projecting the optical pattern on a plurality of particles to control their locations in space.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: February 11, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventor: Mark Saffman
  • Patent number: 10549001
    Abstract: A system and apparatus for sanitizing person use items. The system is comprised essentially of a mechanism for emitting sanitizing electromagnetic radiation within an enclosed compartment. The apparatus may be light-tight such that the radiation is contained within the apparatus. It may be configured to emit a plurality of sanitizing wavelengths. The apparatus may include a series of reflective and/or refractive apparatuses to alter the reflection path of the emitted electromagnetic radiation, allowing the electromagnetic radiation to reflect in a plurality of directions. The enclosure may include a support member or personal item support that may be transparent to, or reflective of, the electromagnetic radiation.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: February 4, 2020
    Assignee: Clean Light Laboratories LLC
    Inventors: Carrie Martz, Brooke O'Connor
  • Patent number: 10548551
    Abstract: The invention comprises a method or apparatus for tomographically imaging a sample, such as a tumor of a patient, using positively charged particles. Position, energy, and/or vectors of the positively charged particles are determined using a plurality of scintillators, such as layers of chemically distinct scintillators where each chemically distinct scintillator emits photons of differing wavelengths upon energy transfer from the positively charged particles. Knowledge of position of a given scintillator type and a color of the emitted photon from the scintillator type allows a determination of residual energy of the charged particle energy in a scintillator detector. Optionally, a two-dimensional detector array additionally yields x/y-plane information, coupled with the z-axis energy information, about state of the positively charged particles.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: February 4, 2020
    Inventors: W. Davis Lee, Mark R. Amato
  • Patent number: 10546717
    Abstract: The system described herein relates to a high-voltage supply unit for providing an output voltage for a particle beam apparatus, wherein the particle beam apparatus is embodied as, for example, an electron beam apparatus and/or an ion beam apparatus. The system described herein is based on the fact that it was recognized that a bipolar voltage supply unit can be formed by means of a unipolar first current source and a unipolar second current source, said bipolar voltage supply unit enabling a load current in two directions. The high-voltage supply unit according to the system described herein can be operated in the 4-quadrant operation. In the 4-quadrant operation, a first voltage source for supplying the first current source and a second voltage source for supplying the second current source are embodied as different voltage sources.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 28, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Edgar Fichter, Joerg Fober, Dirk Preikszas, Christian Hendrich, Michael Schnell, Momme Mommsen
  • Patent number: 10541112
    Abstract: A charged particle beam system comprises a particle beam source having a particle emitter at a first voltage, a first electrode downstream of the particle beam source at a second voltage, a multi-aperture plate downstream of the first electrode, a second electrode downstream of the multi-aperture plate at a third voltage, a third electrode downstream of the second electrode at a fourth voltage, a deflector downstream of the third electrode, an objective lens downstream of the deflector, a fourth electrode downstream of the deflector at a fifth voltage; and an object mount at a sixth voltage. Voltage differences between the first, second, third, fourth and fifth voltages have same and opposite signs.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 21, 2020
    Assignees: Carl Zeiss Microscopy GmbH, Applied Materials Israel, Ltd.
    Inventors: Stefan Schubert, Thomas Kemen, Rainer Knippelmeyer
  • Patent number: 10541120
    Abstract: A method of tandem mass spectrometry is disclosed. A quasi-continuous stream of ions from an ion source (20) and having a relatively broad range of mass to charge ratio ions is segmented temporally into a plurality of segments. Each segment is subjected to an independently selected degree of fragmentation, so that, for example, some segments of the broad mass range are fragmented whilst others are not. The resultant ion population, containing both precursor and fragment ions, is analyzed in a single acquisition cycle using a high resolution mass analyser (150). The technique allows the analysis of the initial ion population to be optimized for analytical limitations.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: January 21, 2020
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventor: Alexander Alekseevich Makarov