Patents Examined by R. Bahr
  • Patent number: 11785692
    Abstract: Exterior lighting systems are provided for towed vehicles, such as towed RVs, which includes a control module for receiving conventional illumination signals from the towing vehicle through a conventional trailer plug, and supplementing those conventional illumination signals with synchronized supplemental LED lighting. That supplemental lighting can include “constant-on” flashing LEDs indicative of operator intentions in the towing vehicle, either at locations adjacent conventional exterior lighting or other locations on the trailer. The control module can also support supplemental exterior illumination of the RV when the towed vehicle is stationary and in use for camping or advertisement. The control module includes a failsafe mode in the event of a fault in the supplemental lighting (so as to maintain conventional exterior lighting capability), diagnostic LED output for troubleshooting, and an automatic reset feature.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: October 10, 2023
    Inventor: Greg Baumgartner
  • Patent number: 11777504
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: October 3, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Patent number: 11764790
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11755942
    Abstract: Methods, systems and apparatus for producing quantum circuits with low T gate counts. In one aspect, a method for performing a temporary logical AND operation on two control qubits includes the actions of obtaining an ancilla qubit in an A-state; computing a logical-AND of the two control qubits and storing the computed logical-AND in the state of the ancilla qubit, comprising replacing the A-state of the ancilla qubit with the logical-AND of the two control qubits; maintaining the ancilla qubit storing the logical-AND of the two controls until a first condition is satisfied; and erasing the ancilla qubit when the first condition is satisfied.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: September 12, 2023
    Assignee: Google LLC
    Inventor: Craig Gidney
  • Patent number: 11757450
    Abstract: A true random-number generator generating a random variable is provided. A first delay circuit delays an input signal to generate a first delayed signal. A second delay circuit delays the first delayed signal to generate a second delayed signal. A first sampling circuit samples the input signal according to a clock signal to generate a first sampled signal. A second sampling circuit samples the first delayed signal according to the clock signal to generate a second sampled signal. A third sampling circuit samples the second delayed signal according to the clock signal to generate a third sampled signal. An operational circuit generates the random variable and adjusts a count value according to the first sampled signal, the second sampled signal, and the third sampled signal. The operational circuit adjusts the clock signal according to the count value.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: September 12, 2023
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventors: Ling-I Cheng, Chih-Ming Hsieh
  • Patent number: 11757439
    Abstract: Delay elements and multiplexers are in programmable delay elements. Each programmable delay element has a chain of delay elements to produce successive delays of a clock of the programmable delay element. Each programmable delay element has a first multiplexer to select among an input clock and delay element outputs in the chain of delay elements to produce a skewed clock output of the programmable delay element. In at least a subset of the programmable delay elements, each programmable delay element has a second multiplexer to select among clocks that include a first clock, and a second clock that is from one of the delay elements of another programmable delay element to produce the clock of the programmable delay element.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: September 12, 2023
    Assignee: EFINIX, INC.
    Inventor: Marcel Gort
  • Patent number: 11757452
    Abstract: A class of complex logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. At least one input to an individual multi-input majority gate is a fixed input. Other inputs are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node, which provides a majority function of the inputs. The summing node is coupled to a CMOS logic. Leakage through the capacitors is configured such that capacitors of a majority gate have substantially equal leakage, and this leakage has a I-V behavior which is symmetric. As such, reset device(s) on the summing node are not used. The non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels, which reduces the high leakage problem faced from majority gates that use linear input capacitors.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: September 12, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Darshak Doshi, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11755943
    Abstract: A method of generating a randomized benchmarking protocol includes providing a randomly generated plurality of Hadamard gates; applying the Hadamard gates to a plurality of qubits; and generating randomly a plurality of Hadamard-free Clifford circuits. Each of the plurality of Hadamard-free Clifford circuits is generated by at least randomly generating a uniformly distributed phase (P) gate, and randomly generating a uniformly distributed linear Boolean invertible matrix of conditional NOT (CNOT) gate, and combining the P and CNOT gates to form each of the plurality of Hadamard-free Clifford circuits. The method also includes combining each of the plurality of Hadamard-free Clifford circuits with corresponding each of the plurality of Hadamard gates to form a sequence of alternating Hadamard-free Clifford-Hadamard pairs circuit to form the randomized benchmarking protocol; and measuring noise in a quantum mechanical processor using the randomized benchmarking protocol.
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: September 12, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dmitri Maslov, Sergey Bravyi, Jay Michael Gambetta
  • Patent number: 11750194
    Abstract: An object is to provide a semiconductor device that can maintain the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units even after supply of power supply voltage is stopped. Another object is to provide a semiconductor device in which the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units can be changed at high speed. In a reconfigurable circuit, an oxide semiconductor is used for a semiconductor element that stores data on the circuit configuration, connection relation, or the like. Specifically, the oxide semiconductor is used for a channel formation region of the semiconductor element.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: September 5, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Fujita, Yutaka Shionoiri, Kiyoshi Kato, Hidetomo Kobayashi
  • Patent number: 11750197
    Abstract: A class of complex logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. At least one input to an individual multi-input majority gate is a fixed input. Other inputs are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node, which provides a majority function of the inputs. The summing node is coupled to a CMOS logic. Leakage through the capacitors is configured such that capacitors of a majority gate have substantially equal leakage, and this leakage has a I-V behavior which is symmetric. As such, reset device(s) on the summing node are not used. The non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels, which reduces the high leakage problem faced from majority gates that use linear input capacitors.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: September 5, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Darshak Doshi, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11742859
    Abstract: Provided is a method and an apparatus for optimizing memory power and provide a method and an apparatus for optimizing memory power by minimizing power consumed by pins of a memory by using an SBR pattern. The method of optimizing memory power using a PAM-4 (Pulse-Amplitude Modulation-4) method includes: setting a ratio and sizes of a pull-up transistor and a pull-down transistor included in a driver according to a smallest size of a plurality of eyes included in an eye diagram of a memory; and setting a reference voltage of a sampler and a phase interpolator (PI) digital code value included in the memory by using a signal bit response (SBR) pattern.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: August 29, 2023
    Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Deog Kyoon Jeong, Jung Hun Park, Kwang Hoon Lee, Yong Jae Lee
  • Patent number: 11742860
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11742432
    Abstract: A logic circuit includes a thin film transistor having a channel formation region formed using an oxide semiconductor, and a capacitor having terminals one of which is brought into a floating state by turning off the thin film transistor. The oxide semiconductor has a hydrogen concentration of 5×1019 (atoms/cm3) or less and thus substantially serves as an insulator in a state where an electric field is not generated. Therefore, off-state current of a thin film transistor can be reduced, leading to suppressing the leakage of electric charge stored in a capacitor, through the thin film transistor. Accordingly, a malfunction of the logic circuit can be prevented. Further, the excessive amount of current which flows in the logic circuit can be reduced through the reduction of off-state current of the thin film transistor, resulting in low power consumption of the logic circuit.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: August 29, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Masashi Tsubuku, Kosei Noda
  • Patent number: 11734598
    Abstract: Systems, computer-implemented methods, and computer program products to facilitate quantum state preparation of a probability distribution to perform amplitude estimation are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a data loader component that prepares a quantum state of a probability distribution based on structure of a quantum amplitude estimation algorithm. The computer executable components can further comprise an operator component that constructs a quantum operator based on the quantum state to perform quantum amplitude estimation.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: August 22, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stefan Woerner, Almudena Carrera Vazquez
  • Patent number: 11713860
    Abstract: An encapsulated LED switch that incorporates a MOSFET power drivers, high current transistors, or other suitable power drivers in a PCB that attaches to the LED switch such that a low power LED switch controls the output of a high-power driver. The selected power driver PCB can be adapted to different load requirements by making simple changes. The PCB's can be interchanged to provide for a predetermined output power required for a particular application. In addition, the wire gauge size of the wires attached to the MOSFET power driver PCB can also be varied to match intended load requirements. For applications in which the LED switch is used in hostile environments, such as marine applications, the LED switch and its associated power driver PCB are encapsulated to protect the circuitry from environmental factors such as high humidity, salt water, etc.
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: August 1, 2023
    Assignee: Bocatech, Inc.
    Inventors: Keith Rollinson, John Paul Santana
  • Patent number: 11711080
    Abstract: The off-chip driving (OCD) device includes a signal transition detector, a front-end driver, a first main driver, a second main driver, a first resistance provider and a second resistance provider. The signal transition detector is used to detect a transition status of an input signal to generate decision information. The front-end driver generates control signals according to the decision information, and generates driving signals according to the input signal. The first main driver and the second main driver generate an output signal to a pad according to the driving signals. The first resistance provider adjusts a first resistance between the first main driver and the pad according to a first control signal. The second resistance provider adjusts a second resistance between the second main driver and the pad according to a second control signal.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: July 25, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chang-Ting Wu
  • Patent number: 11711083
    Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: July 25, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Guarav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11711081
    Abstract: Techniques and apparatus for reducing low frequency power supply spurs in clock signals in a clock distribution network. One example circuit for clock distribution generally includes a plurality of logic inverters coupled in series and configured to drive a clock signal and a current-starved inverter coupled in parallel (or in series) with a logic inverter in the plurality of logic inverters.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: July 25, 2023
    Assignee: XILINX, INC.
    Inventor: Roswald Francis
  • Patent number: 11705906
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: July 18, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11705903
    Abstract: The embodiments herein describe technologies for back-gate biasing of clock trees using a reference generator. A circuit includes a set of clock buffers and a programmable voltage reference generator to apply a voltage to a back gate of a transistor of the set of clock buffers.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: July 18, 2023
    Assignee: Rambus Inc.
    Inventors: Alain Rousson, Hui Song, Ravi Shivnaraine, Christopher Holdenried, Hector Villacorta