Patents Examined by Rahul Maini
  • Patent number: 10649044
    Abstract: A method of hyperpolarisation of nuclear spins in one or more particle(s) moving relatively to a polarisation structure, wherein a polarisation of electron spins in the polarisation structure is transferred to the nuclear spins in the particle(s), wherein for one or more of the moving particle(s) within 20 nm from a surface of the polarisation structure, the correlation time of the interaction with the nearest polarisation structure electron spin due to the molecular motion is larger than the inverse of the nuclear Larmor frequency; the electron spins in the polarisation structure are polarised above thermal equilibrium; and the polarisation transfer is performed resonantly.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: May 12, 2020
    Assignee: UNIVERSITÄT ULM
    Inventors: Fedor Jelezko, Martin Plenio, Ilai Schwartz, Qiong Chen, Alex Retzker
  • Patent number: 10637567
    Abstract: A measuring instrument for detecting a source of passive intermodulation (PIM) includes a first signal source, a second source and a receiver. The first and second signal sources are each connected with separate transmit antenna to transmit a first and second signal, respectively. The first transmit antenna and the second transmit antenna are arranged in a fixed relationship relative to each other such that the first signal and the second signal are combinable to generate a PIM signal at a PIM. The receiver is connected with a receive antenna and arranged in a fixed relationship relative to the first transmit antenna and the second transmit antenna to receive the PIM signal reradiated from the PIM source. The receiver is configured to receive the PIM signal and indicate detection of the PIM source in response to receiving the PIM signal.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: April 28, 2020
    Assignee: ANRITSU COMPANY
    Inventor: Donald Anthony Bradley
  • Patent number: 10627258
    Abstract: In a related-art resolver, a front and a back of a stator core cannot be distinguished, and it is difficult to mass-produce the resolver while matching directions of shear drops and burrs. Thus, assembly accuracy of the resolver is degraded. Further, productivity and assembling ability are degraded because electromagnetic steel sheets are laminated by rotary lamination. The present invention provides a resolver including: a resolver stator including: a stator core formed of electromagnetic steel sheets, which have teeth, and are laminated without rotary lamination; a one-phase excitation winding; and two-phase output windings; and a resolver rotor arranged to be opposed to the resolver stator, in which the stator core has marks which enable distinction of a rolling direction of the stator core and distinction of a front and a back of the stator core.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: April 21, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Morita, Atsushi Yamamoto, Masahiko Fujita, Naohiro Motoishi, Kazumasa Ito, Masatsugu Nakano
  • Patent number: 10622800
    Abstract: The line power and neutral conductors for an arc fault sensing circuit interrupter such as in a miniature circuit breaker are arranged as a rigid conductor surrounding and holding an insulated flexible conductor when passing through the Ground Fault Interrupter current transformer. Voltage metering takes place across the rigid conductor to enable arc fault detection and ground fault detection in the miniature circuit breaker within the space of a single current transformer.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: April 14, 2020
    Assignee: Schneider Electric USA, Inc.
    Inventors: Randall J Gass, Jason Potratz, Dennis W Fleege
  • Patent number: 10613183
    Abstract: In a magnetic resonance (MR) method and apparatus, MR signals are acquired in multiple diffusion measurements using a defined set of parameters in the respective measurements that differ in terms of at least one MR parameter from measurement-to-measurement, thereby producing a measured MR signal dataset. Multiple calculated datasets are calculated using a model, with a defined number of model parameters in each calculated dataset, but in different combinations, with each calculated dataset having an MR signal intensity. The measured MR signal having a closest match to the measured MR signal dataset, using a quality criterion based on the MR signal intensity, is identified, and the diffusion parameter is obtained from the calculated dataset having the closest match.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: April 7, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Stefan Huwer, Thorsten Feiweier
  • Patent number: 10613150
    Abstract: A battery health state evaluation method for evaluating a health state of a battery comprises a charging step, an idling step, a pulse discharging step, an evaluation index calculating step, and an evaluation result yielding step. The evaluation index calculating step retrieves a continuous voltage data and a continuous current data in a charging process, an idling process, and a pulse discharge process and calculates a plurality of evaluation indexed according to the continuous voltage data and continuous current data. The evaluation indexes are associated with the health state of the battery. The evaluation result yielding step evaluates the health state of the battery according to the indexes and yields an evaluation result. Therefore, the battery health state evaluation method is easy, convenient, and effective in performing a test quickly and accurately.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 7, 2020
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Wen-Chen Lih, Hung-Jhih Ku, Bo-Lin Liao, Tsung-Yu Tsai
  • Patent number: 10598741
    Abstract: A latch assembly comprising: a latch operable to adopt a latched condition and an unlatched condition; a magnet imparting a magnetic field; a sensor adapted to sense the magnetic field; the latch, magnet and sensor being configured such that a change in the condition of the latch effects a variance in the magnetic field sensed by the sensor to distinguish between the latched condition and the unlatched condition, wherein the latch includes a latch member that is moveable relative to both the sensor and the magnet when the latch changes from the unlatched condition to the latched condition and the proximity of the latch member to the magnet changes the strength of the magnetic field sensed by the sensor.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: March 24, 2020
    Assignee: D & D Group Pty Ltd
    Inventors: Glenn Smith, Klaus Peter Nink
  • Patent number: 10591522
    Abstract: A measurement apparatus (1) comprising a high frequency measurement unit (2) adapted to measure high frequency parameters (HFP) of a device under test (DUT) connected to ports of said measurement apparatus (1) and a multimeter unit (3) adapted to measure DC characteristics parameters (DCP) of said device under test (DUT) connected via control signal lines (CL) to a control bus interface (6) of said measurement apparatus (1).
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: March 17, 2020
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventors: Werner Held, Martin Leibfritz, Marcel Ruf
  • Patent number: 10591514
    Abstract: A current measuring device is protected against electrical surges in the event of the device being open circuit. The device includes a first current transformer, a first connection terminal having connected thereto a first terminal of the first current transformer, a second connection terminal having connected thereto a second terminal of the first current transformer, a protective resistance having a first terminal connected to the second connection terminal, and a load resistance connected between the first and second connection terminals across the terminals of which a voltage is measured from which the current flowing in a circuit passing through the first current transformer is determined. The device also includes a second current transformer connected to the terminals of the protective resistance, and current branch connection structure connected between the first connection terminal and a second terminal of the protective resistance.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: March 17, 2020
    Assignee: SAFRAN ELECTRICAL & POWER
    Inventor: Pierre Henri Henrard
  • Patent number: 10575398
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor and a detector. The at least one tamper-respondent sensor includes conductive lines which form, at least in part, at least one tamper-detect network of the tamper-respondent sensor(s). In addition, the tamper-respondent sensor(s) includes at least one interconnect element associated with one or more conductive lines of the conductive lines forming, at least in part, the tamper-detect network(s). The interconnect element(s) includes at least one interconnect characteristic selected to facilitate obscuring a circuit lay of the at least one tamper-detect network. In operation, the detector monitors the tamper-detect network(s) of the tamper-respondent sensor(s) for a tamper event.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: February 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, John R. Dangler, Michael J. Fisher, David C. Long
  • Patent number: 10568202
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor and a detector. The at least one tamper-respondent sensor includes conductive lines which form, at least in part, at least one tamper-detect network of the tamper-respondent sensor(s). In addition, the tamper-respondent sensor(s) includes at least one interconnect element associated with one or more conductive lines of the conductive lines forming, at least in part, the tamper-detect network(s). The interconnect element(s) includes at least one interconnect characteristic selected to facilitate obscuring a circuit lay of the at least one tamper-detect network. In operation, the detector monitors the tamper-detect network(s) of the tamper-respondent sensor(s) for a tamper event.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: February 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, John R. Dangler, Michael J. Fisher, David C. Long
  • Patent number: 10565910
    Abstract: An adjustment device for light-on testing and a light-on testing device are provided. The adjustment device for light-on testing including a substrate, a first pressing member and a second pressing member disposed on the substrate, wherein, the first pressing member and the second pressing member are disposed on the substrate and capable of moving with respect to each other, so that a distance therebetween is adjustable; and the first pressing member and the second pressing member are respectively provided with a probe for contacting a product to be subjected to the light-on testing.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 18, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., ORDOS YUANSHENG OPTOELECTRONICS CO., LTD.
    Inventors: Long Han, Libin Liu
  • Patent number: 10545186
    Abstract: Localizing hot spots in multi layered device under test (DUT) by using lock-in thermography (LIT) where plural hot spots of electrical circuits are buried in the DUT at different depth layers from a bottom layer to a top layer, comprises applying test signals of multiple frequencies to the electrical circuits of the DUT for exciting the hot spots; imaging a top surface of the top layer of the DUT at timed intervals to obtain IR images of the DUT while the test signal is applied to the electrical circuits wherein the images are in correlation to a propagation of heat from the hot spots in the DUT; detecting the thermal response signals at the timed intervals from the images taken from the DUT; and determining changes in the appearance of hot spot images on the top surface of the DUT in relation to the frequencies of the thermal response signals.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: January 28, 2020
    Assignee: FEI EFA, Inc.
    Inventor: Christian Schmidt
  • Patent number: 10539628
    Abstract: A method for monitoring a state variable of at least one battery cell of a battery. The battery has at least two battery cells that are arranged adjacent to one another. A first electrically conductive surface is provided at a boundary surface of a first battery cell and a second electrically conductive surface is provided at a boundary surface of a second battery cell. The electrically conductive surfaces are arranged electrically insulated from each other. An electrical voltage is applied between the two electrically conductive surfaces. An electrical variable produced due to an effect of the electrical voltage is analyzed. The state variable on the basis of the analysis is determined.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: January 21, 2020
    Assignee: AUDI AG
    Inventors: Michael Hinterberger, Berthold Hellenthal
  • Patent number: 10533875
    Abstract: A sensor system including a movable member, a sensor, and an interpolator. The sensor is configured to generate a first output signal and a second output signal. The first output signal has a first phase angle, the second output signal has a second phase angle, and a first difference between the first phase angle and the second phase angle has a first value. The first value of the first difference includes an offset related to a mechanical incompatibility between the sensor and the movable member. The interpolator is configured to receive the first output signal and the second output signal. The interpolator is operable to apply a compensation factor to generate a third signal having a third phase. The compensation factor has a value that is based on the mechanical incompatibility between the sensor and the movable member.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: January 14, 2020
    Assignee: The Timken Company
    Inventors: Lei Wang, Alfred J. Santos, Mark E. Lacroix
  • Patent number: 10534020
    Abstract: The invention relates to a coupling for electrically and mechanically connecting medium-voltage or high-voltage components, in particular for voltages of 1 kV to 52 kV, comprising a first connecting piece for mechanically and electrically connecting a medium-voltage or high-voltage component, in particular for connecting to a complementary connecting piece of a bushing of a switchgear cabinet, and a second connecting piece for mechanically and electrically connecting another medium-voltage or high-voltage component, in particular for connecting to a complementary connecting piece of an electrical cable, wherein the two connecting pieces of the coupling belong to complementary connection types, which fit together mechanically, and comprising a low-resistance current sensing resistor, which is built into the coupling and electrically connected between the first connecting piece and the second connecting piece in order to measure a current flow between the first connecting piece and the second connecting piece.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: January 14, 2020
    Assignee: ISABELLENHÃœTTE HEUSLER GMBH & CO. KG
    Inventors: Ullrich Hetzler, Jan Marien, Alexander Wassmann, Eckhard Wendt
  • Patent number: 10520629
    Abstract: Systems and methods for vehicle detection and assessments of loop deterioration rely on changes in inductance of a loop sensor. The conductive element of the loop sensor is modeled using one or more inductances and one or more resistances. Sets of stimuli at different frequencies are provided to the loop sensor, and the resulting responses form the basis for vehicle detection and for an assessment whether the loop sensor has deteriorated.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 31, 2019
    Assignee: HM Electronics, Inc.
    Inventors: David O'Gwynn, Shane Robert Petcavich
  • Patent number: 10510945
    Abstract: A magnetoelastically actuated device includes a microscale cantilever arm supported at a standoff distance from a substrate. The cantilever arm is formed as a laminar magnetic actuator configured to bend when it is subjected to a magnetic field. The cantilever arm includes a film of magnetostrictive material. Also provided is a method for fabricating the magnetoelastically actuated device. The method includes defining an actuator mold in a layer of photoresist on a structural layer of the cantilever arm and electrodepositing a layer of a magnetostrictive alloy containing cobalt and iron onto the structural layer within the actuator mold.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Eric Langlois, Christian L. Arrington, Patrick S. Finnegan, Andrew E. Hollowell, Jamin Ryan Pillars, Todd Monson
  • Patent number: 10495703
    Abstract: A nonlinear terahertz (THz) spectroscopy technique uses a sample illuminated by two THz pulses separately. The illumination generates two signals BA and BB, corresponding to the first and second THz pulse, respectively, after interaction with the sample. The interaction includes excitation of at least one ESR transition in the sample. The sample is also illuminated by the two THz pulses together, with an inter-pulse delay ?, generating a third signal BAB. A nonlinear signal BNL is then derived via BNL=BAB?BA?BB. This nonlinear signal BNL can be then processed (e.g., Fourier transform) to study the properties of the sample.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: December 3, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Harold Young Hwang, Jian Lu, Yaqing Zhang, Benjamin K. Ofori-Okai, Keith A. Nelson, Xian Li
  • Patent number: 10473733
    Abstract: Magnetic field compensation device having a first bar-shaped flux concentrator and a second bar-shaped flux concentrator, wherein the first flux concentrator and the second flux concentrator are separated from one another in a y-direction, and the longitudinal axis of the first flux concentrator and the longitudinal axis of the second flux concentrator are arranged to be substantially parallel to one another. A control unit is in an operative electrical connection with the magnetic field sensor and the compensating coil, and the control unit is equipped to control the compensating current through the compensating coil using a measured signal from the magnetic field sensor in such a manner that, for an external magnetic field formed in the x-direction at the location of the magnetic field sensor, the magnetic field is substantially compensated.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: November 12, 2019
    Assignee: TDK-Micronas GmbH
    Inventor: Joerg Franke