Patents Examined by Rakesh Dhingra
  • Patent number: 7988816
    Abstract: A plasma etching apparatus includes an upper electrode and a lower electrode, between which plasma of a process gas is generated to perform plasma etching on a wafer W. The apparatus further comprises a cooling ring disposed around the wafer, a correction ring disposed around the cooling ring, and a variable DC power supply directly connected to the correction ring, the DC voltage being preset to provide the correction ring with a negative bias, relative to ground potential, for attracting ions in the plasma and to increase temperature of the correction ring to compensate for a decrease in temperature of a space near the edge of the target substrate due to the cooling ring.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 2, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Yoshinobu Ooya, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Patent number: 7981218
    Abstract: A substrate supporting mechanism includes a function for heating a substrate placed thereon in a process container of a substrate processing apparatus. The substrate supporting mechanism includes a worktable configured to place the substrate thereon and including a heating element made of silicon carbide and formed in a predetermined pattern; an electric feeder electrode configured to supply electricity to the heating element; and a partition member made of an electrically insulating material and interposed between portions adjacent to each other in the heating element formed in the predetermined pattern.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: July 19, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Jun Yamashita
  • Patent number: 7975646
    Abstract: Device for depositing a coating on an internal surface of a container, of the type in which the deposition is carried out by means of a low-pressure plasma created inside the container by excitation of a precursor gas by microwave-type electromagnetic waves.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: July 12, 2011
    Assignee: Sidel Participations
    Inventors: Jean-Michel Rius, Nicolas Chomel, Yves-Alban Duclos
  • Patent number: 7976672
    Abstract: A plasma generation apparatus is provided which includes: a microwave generation portion which generates a microwave; a gas supply portion which supplies a gas to be turned into plasma; a plasma generation nozzle which includes a reception member receiving the microwave, and turns the gas into plasma based on the energy of the received microwave and emits the plasma gas; and a photo-detection unit which detects light emitted by the plasma gas and generates electrical information.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: July 12, 2011
    Assignee: Saian Corporation
    Inventors: Hidetaka Matsuuchi, Ryuichi Iwasaki, Hirofumi Mankawa, Shigeru Masuda, Hirofumi Hayashi, Masaaki Mike
  • Patent number: 7942112
    Abstract: A system and method for preventing formation of a plasma-inhibiting substance within a plasma chamber is provided. In one embodiment, an apparatus that includes a barrier component configured to be disposed within a plasma chamber. The barrier component includes a wall that defines a plasma formation region where a chemically-reducing species is formed from a fluid. A portion of the wall is formed of a substance that is substantially inert to the chemically-reducing species. The wall prevents the chemically-reducing species from interacting with an inner surface of the plasma chamber to form a conductive substance. The barrier component also includes an opening in fluid communication with the plasma formation region. The fluid is introduced into the plasma formation region via the opening.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: May 17, 2011
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Fernando Gustavo Tomasel, Justin Mauck, Andrew Shabalin, Denis Shaw, Juan Jose Gonzalez
  • Patent number: 7938081
    Abstract: A radial line slot antenna (RLSA) is described for generating plasma during semiconductor device fabrication. The antenna comprises a resonator plate having a partially open, electrically conductive layer coupled to a surface of the resonator plate. For example, the electrically conductive layer is formed at an interface between the resonator plate and the plasma.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: May 10, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Lee Chen, Paul Moroz
  • Patent number: 7934468
    Abstract: Microwaves propagated through the waveguide 30, a plurality of slots 31 and the dielectric members 33 in this order are supplied into the processing chamber U where they are used to excite a gas to plasma to be used to process a substrate G. Alumina 50 fills an area inside the waveguide 30 near an end surface C thereof, and the remaining area inside the waveguide is filled with Teflon 35. Since the alumina 50 has a smaller guide wavelength ?g compared to the Teflon 35, the mechanical length measured from the end surface C of the waveguide 30 to the center of the closest slot is reduced compared to the mechanical length of a waveguide filled only with Teflon 35 while maintaining the physical characteristic length from the end surface C to the closest slot center at ?g/4.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: May 3, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Takahiro Horiguchi
  • Patent number: 7931776
    Abstract: A plasma processing apparatus including a chamber having an inner wall with a protective film thereon and a sample stage disposed in the chamber in which plasma is generated by supplying high-frequency wave energy to processing gas to conduct plasma processing for a sample on the sample stage using the plasma. The apparatus includes a control device which determines, based on monitor values of a wafer attracting current monitor (Ip) to monitor a current supplied from a wafer attracting power source, an impedance monitor (Zp) to monitor plasma impedance viewed from a plasma generating power source, and an impedance monitor (Zb) to monitor a plasma impedance viewed from a bias power supply, presence or absence of occurrence of an associated one of abnormal discharge in inner parts, deterioration in insulation of an insulating film of a wafer attracting electrode, and abnormal injection in a gas injection plate.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: April 26, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Naoshi Itabashi, Tsutomu Tetsuka, Seiichiro Kanno, Motohiko Yoshigai
  • Patent number: 7930992
    Abstract: Resonance can be surely provided under any plasma condition in such a manner that an antenna (3) is arranged in an opening of an upper part of a chamber (1) to produce an electromagnetic field generated by a microwave, a top plate (4) for sealing the opening of the chamber (1) is provided under the antenna (3), a ring-shaped ridge (41) is provided on a lower surface of the top plate (4) such that a thickness thereof in a diameter direction is tapered so as to be varied sequentially. Thus, only one kind of top plate has the same effect as a top plate having various thicknesses, so that absorption efficiency to the plasma can be considerably improved and the plasma can be generated stably over a range from a high pressure to a low pressure.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: April 26, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Toshihisa Nozawa, Kiyotaka Ishibashi
  • Patent number: 7927455
    Abstract: A plasma processing apparatus including a sealable chamber that is sealable, a gas supply section that supplies a reactive material gas into the chamber, and a plurality of cathode and anode electrode pairs provided within the chamber, connected to an external power supply, and producing plasma discharges through the material gas, respectively, wherein the plurality of cathode and anode electrode pairs are provided at a distance from one another at which the plasma discharges are prevented from interfering with one another.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: April 19, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Katsushi Kishimoto, Yuhsuke Hukuoka
  • Patent number: 7909961
    Abstract: A method and apparatus for etching photomasks are provided herein. The apparatus includes a process chamber with a shield above a substrate support. The shield comprises a plate with apertures, and the plate has two zones with at least one characteristic, such as material or potential bias, that is different from each other. The method provides for etching a photomask substrate with a distribution of ions and neutral species that pass through the shield.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: March 22, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Ajay Kumar, Madhavi R. Chandrachood, Richard Lewington, Darin Bivens, Amitabh Sabharwal, Sheeba J. Panayil, Alan Hiroshi Ouye
  • Patent number: 7897009
    Abstract: A plasma processing apparatus (100) includes a plasma generation mechanism; a process container defining a process chamber configured to perform a plasma process on a target substrate; a substrate worktable configured to place the target substrate thereon inside the process container; and an exhaust mechanism configured to decrease pressure inside the process container. A wall (27a) of a support portion (27) for supporting a microwave transmission plate (28) is present in an area having an electron temperature of 1.5 eV or more during plasma generation. A covering portion (60) made of a heat resistant insulator, such as quartz, is disposed to cover the wall (27a).
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: March 1, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Masaru Sasaki
  • Patent number: 7895971
    Abstract: A microwave plasma processing apparatus which easily ensures uniformity and stability of plasma in response to changes of process conditions and the like. The microwave plasma processing apparatus generates plasma of a process gas in a chamber by microwave and performs plasma processing to a work to be processed by using the plasma. On a plate composed of a conductor covering the outer circumference of a microwave transmitting board, two or more holes for propagating microwave from an edge part of the microwave transmitting board to an inner part of the plate are formed. Volume adjusting mechanisms and adjust the volume of the holes to adjust impedance of each unit when the microwave transmitting board is divided into individual units to which each of the holes belongs, and electric field distribution of the microwave transmitting board is controlled.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: March 1, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Caizhong Tian, Toshihisa Nozawa
  • Patent number: 7883601
    Abstract: An apparatus for controlling a plasma etching process includes plasma control structure that can vary a size of a plasma flow passage, vary a speed of plasma flowing through the plasma flow passage, vary plasma concentration flowing through the plasma flow passage, or a combination thereof.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 8, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih Ming Chang, Chi-Lun Lu
  • Patent number: 7862659
    Abstract: The present invention relates to a semiconductor manufacturing device that a maintenance or a repairing is easy so that an efficiency of manufacturing can be enhanced because a high temperature of a susceptor can be rapidly down. The present invention relates to a semiconductor manufacturing device that an efficiency of manufacturing can be enhanced because a heater for heating the semiconductor is heated by an external heating device.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: January 4, 2011
    Assignee: TTS Co., Ltd.
    Inventors: You-Dong Lim, Jae-Ho Byun
  • Patent number: 7862683
    Abstract: An apparatus and method for improving the chamber dry cleaning of a PECVD system. The apparatus includes an annular gas ring with multiple outlets for introducing a cleaning gas into the process chamber, and the method includes using the gas ring to introduce a cleaning species from a remote plasma source into the processing chamber.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: January 4, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Noriaki Fukiage
  • Patent number: 7854213
    Abstract: An inductively coupled plasma source is provided with a peripheral ionization source for producing a high-density plasma in a vacuum chamber for semiconductor wafer coating or etching. The source has a segmented configuration with high and low radiation segments and produces a generally ring-shaped array of energy concentrations in the plasma around the periphery of the chamber. Energy is coupled from a segmented low inductance antenna through a dielectric window or array of windows and through a segmented shield or baffle. The antenna for the source is a planer coil having at least two windings with the gap between the windings variable or modulated to control the antenna inductance around the antenna. The antenna has a plurality of, for example three, high inductance segments as a result of the conductor windings being closely spaced alternating with low inductance segments as a result of the conductor windings being widely spaced. The antenna and a shield are part of a plasma source.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: December 21, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Patent number: 7849814
    Abstract: A plasma generating device provided with a plasma generating chamber (10) and a high-frequency antenna (1) arranged in the chamber (10) for generating inductively coupled plasma by applying a high-frequency power to a gas in the chamber (10) from the antenna (1). The antenna (1) is a low-inductance antenna formed of a first portion (11) extending from the outside of the chamber (10) into the chamber (10), and a plurality of second portions (12) diverging from an inner end (11e) of the first portion (11) in an electrically parallel fashion, and having a termination (12e) directly connected to the inner wall of the grounded chamber (10). The surface of the antenna (1) is coated with an electrically insulating material. Frequency of the high-frequency power applied to the antenna may be in a range from 40 MHz to hundreds of megahertz.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: December 14, 2010
    Assignee: Nissin Electric Co., Ltd.
    Inventors: Masatoshi Onoda, Eiji Takahashi
  • Patent number: 7846255
    Abstract: Processing equipment for an object to be processed is provided with a process container, the internal of which can be evacuated, a gas introducing means for introducing a prescribed gas into the process container, a supporting table provided in the process container, a ring-shaped supporting part provided on the supporting table for supporting the object to be processed, a plurality of thermoelectric conversion elements provided on an upper plane of the supporting table on an inner side of the supporting part, an element storing space evacuating means for evacuating inside the element storing space formed by a lower plane of the object to be treated, which is supported by the supporting part, an upper plane of the supporting table and the supporting part.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: December 7, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Masatake Yoneda, Shigeru Kasai, Masahiro Shimizu
  • Patent number: 7845310
    Abstract: An antenna array for a radio frequency plasma process chamber including, an array of electrodes, an array of dielectric tubes concentrically disposed about each electrode tube to define a chamber configured to be at atmospheric pressure between an outer surface of each electrode tube and an inner surface of the corresponding dielectric tube, and a hermetic seal between each dielectric tube and the plasma process chamber configured to allow a vacuum or low pressure in the plasma process chamber.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: December 7, 2010
    Assignee: Axcelis Technologies, Inc.
    Inventors: William F. DiVergilio, Aseem K. Srivastava