Patents Examined by Rakesh Dhingra
  • Patent number: 7837798
    Abstract: An apparatus for manufacturing a semiconductor or liquid crystal is provided with a reaction chamber housing a ceramic holder with an embedded resistive heating element, and a cylindrical support member one end of which supports the ceramic holder and the other end of which side is fixed to the reaction chamber. One end of the cylindrical support member is hermetically bonded to the ceramic holder; and a partition plate and sealing material hermetically seal the other end of which side. Embodiments include partitioning the space within the cylindrical support member with the ceramic holder, and the partition plate and depressurizing to vacuum or to a reduced pressure atmosphere of an inert gas.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: November 23, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Kuibira, Masuhiro Natsuhara, Hirohiko Nakata
  • Patent number: 7837799
    Abstract: An arrangement for transporting a flat substrate through a coating installation, wherein the coating installation comprises, e.g., several and different sputter cathodes, to which the flat substrate, for example a glass pane, is transported one after the other in vacuo. So that no abrasion is generated between glass pane and contact, the glass pane is kept spaced apart from the contact by means of gas pressure. The gas pressure is herein built up through relatively few and small holes in a gas channel. Since during flooding of the coating installation to atmospheric pressure or during evacuation, due to the small holes, no fast pressure equalization between gas channel and the remaining coating installation is possible, the gas channel is decoupled in terms of gas from the remaining coating installation and provided with a separate gas line, via which gas can be introduced into the gas channel or pumped out of it.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: November 23, 2010
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Stefan Bangert, Frank Fuchs, Uwe Schuessler, Ralph Lindenberg, Tobias Stolley
  • Patent number: 7828927
    Abstract: A plasma processing device comprising a chamber (1) for accommodating therein a substrate (11), a high-frequency power supply (5) for generating microwave, and an antenna unit (3) for radiating microwave into the chamber (1). Microwave generated in the power supply (5) is sent to the antenna unit (3) via a waveguide (6). A top plate (4) forming part of a partition wall of the chamber (1) is formed at the upper portion of the chamber (1). A specified annular delay pass unit (2) formed of the same material as that of the top plate (4), for delaying the propagation of microwave, is provided on the outer peripheral portion of the top plate (4). Accordingly, the plasma processing device can restrict an abnormal discharge and the production of the foreign matters.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: November 9, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kiyotaka Ishibashi, Toshihisa Nozawa
  • Patent number: 7824520
    Abstract: In the case of generating plasma under atmospheric pressure, the particle generated due to generation of high-density plasma is to be a cause of a defect such as a point defect or a line defect of a display portion in a display device. The present invention is offered in view of the above situation, and provides a plasma treatment apparatus for suppressing generation of a particle. According to the present invention, plasma is generated in a limited minimum region to be treated by a plasma treatment over a substrate to be treated. Generation of a particle is suppressed to a minimum by providing a plurality of plasma generation units generating minimum plasma having a similar size as the limited minimum region, changing a relative position of the plurality of plasma generation units and the substrate to be treated, and performing a plasma treatment to a limited predetermined region.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: November 2, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Osamu Nakamura
  • Patent number: 7810448
    Abstract: The invention relates to an apparatus and a method for the coating of hollow bodies, in particular for the internal coating of plastic drinks bottles by means of a PICVD. It is an object of the invention to ensure a flexible process sequence, a high throughput, an improved supply of fluid and a high-quality coating. The invention in particular proposes a rotary apparatus which comprises a treatment device with double reactors for receiving in each case at least one workpiece, a fluid supply apparatus and at least one fluid control device, which can be used to control the supply of fluid to the treatment device. It is preferable for the vacuum pumps to be arranged on the rotor such that they rotate therewith.
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: October 12, 2010
    Assignee: Schott AG
    Inventors: Stephen Behle, Andreas Lüttringhaus-Henkel, Gregor Arnold, Matthias Bicker, Jürgen Klein
  • Patent number: 7810449
    Abstract: A low inductance RF antenna is provided for producing a high-density plasma in a vacuum chamber for semiconductor wafer coating or etching. The antenna has a planar segmented configuration having high and low efficiency segments and produces a generally ring-shaped array of energy concentrations in the plasma around the periphery of the chamber. The antenna has closely spaced conductor segments through which current flows in one or more small cross-section conductors to produce high magnetic fields while alternating widely spaced conductor segments produce low strength magnetic fields.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: October 12, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Jozef Brcka, Rodney Lee Robison
  • Patent number: 7811409
    Abstract: Bare aluminum baffles are adapted for resist stripping chambers and include an outer aluminum oxide layer, which can be a native aluminum oxide layer or a layer formed by chemically treating a new or used bare aluminum baffle to form a thin outer aluminum oxide layer.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: October 12, 2010
    Assignee: Lam Research Corporation
    Inventors: Fred D. Egley, Michael S. Kang, Anthony L. Chen, Jack Kuo, Hong Shih, Duane Outka, Bruno Morel
  • Patent number: 7806985
    Abstract: An improvement has been made in contact states between a rotating electrode arranged inside a vacuum chamber and a power supply mechanism which touches the rotating electrode to supply electric power thereto. A vacuum device is provided with a vacuum chamber, a rotating electrode arranged inside and electrically insulated from the vacuum chamber, and a power supply mechanism which touches the rotating electrode to supply electric power thereto, wherein the rotating electrode has an annular shape and horizontally rotates with respect to the center axis of the annular shape, and the power supply mechanism is composed of electrode members, and the electrode member and the rotating electrode come into contact with each other at at least one contact surface.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: October 5, 2010
    Assignee: Showa Shinku Co., Ltd.
    Inventors: Masayuki Takimoto, Hiroyuki Komuro, Yutaka Fuse, Tatsumi Abe, Kazuhito Aonahata
  • Patent number: 7806077
    Abstract: Microwave plasma nozzle array systems and methods for configuring the microwave plasma nozzle arrays are disclosed. The microwaves are transmitted to a microwave cavity in a specific manner and form an interference pattern that includes high-energy regions within the microwave cavity. The high-energy regions are controlled by the phases and the wavelengths of the microwaves. A plurality of nozzle elements is provided in the array. Each of the nozzle elements has a portion partially disposed in the microwave cavity and receives a gas for passing therethrough. The nozzle elements receive microwave energy from one of the high-energy regions. Each of the nozzle elements include a rod-shaped conductor having a tip that focuses the microwaves and a plasma is then generated using the received gas.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: October 5, 2010
    Assignees: Amarante Technologies, Inc., Saian Corporation
    Inventors: Sang Hun Lee, Jay Joongsoo Kim
  • Patent number: 7799134
    Abstract: A shower plate 122 has protrusions 22 formed on the front face used with a first electrode in a plasma CVD apparatus. A plane-surface portion 23 is left around apertures of gas inlet holes 21 formed in the shower plate 122. With protrusions 22 being formed, a surface area of the first electrode is increased.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: September 21, 2010
    Assignee: ASM Japan K.K.
    Inventors: Naoto Tsuji, Hideaki Fukuda, Hiroki Arai, Yoshinori Morisada, Tamihiro Kobayashi
  • Patent number: 7793612
    Abstract: A method and apparatus for making an optical fiber preform, including injecting a plasma gas source into the first end of a tubular member; generating a ring plasma flame with the plasma gas source flowing through a plasma gas feeder nozzle, the plasma gas feeder nozzle including: an inner tube, an outer tube, wherein the plasma gas source is injected between the inner tube and the outer tube to produce the ring plasma flame, such that at least a portion of the ring plasma flame is directed radially toward the inner surface of the tubular member; traversing the tubular member along the longitudinal axis relative to the plasma flame; depositing at least one soot layer on the interior surface of the tubular member by introducing reagent chemicals into the plasma flame; and fusing all of the soot layers into a glass material on the interior surface of the tubular member.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: September 14, 2010
    Assignee: Silica Tech, LLC
    Inventors: Mikhail I. Guskov, Mohd A. Aslami, Evgueni B. Danilov, Dau Wu
  • Patent number: 7789992
    Abstract: A neutral beam etching device for separating and accelerating a plasma is provided. The device includes a first chamber having a first opening formed at one side thereof; a second chamber having a second opening formed at one side thereof and being disposed inside the first chamber to form a plasma generation area; a first channel fluidly communicating the first opening with the plasma generation area; a second channel fluidly communicating the second opening with the plasma generation area; a coil disposed on an outer surface of the first chamber and which generates a magnetic field to generate a plasma in the plasma generation area; and an acceleration part disposed within the first and second chambers and configured to separate the plasma into a positive ion and an electron, accelerate the positive ion and the electron, and discharge the positive ion and electron through the first and the second channels.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Won-tae Lee
  • Patent number: 7779783
    Abstract: A plasma processing apparatus includes a chamber, a dielectric top plate member disposed on an upper portion of the chamber and an antenna having a plurality of slots. The antenna is disposed on the top plate member and is in close contact with the top plate member. The top plate member includes a flat plate portion formed to face the substrate and a sidewall portion formed to extend from a peripheral region of the flat plate portion towards the substrate. The sides of the flat plate portion and the sidewall portion facing a plasma generation region have a curved surface extending between the flat plate portion and the sidewall portion and the sidewall portion has a thickness not smaller than ?g/4 but not greater than ?g, ?g being a wavelength of the microwave.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: August 24, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kiyotaka Ishibashi, Toshihisa Nozawa
  • Patent number: 7780786
    Abstract: An internal member of a plasma processing vessel includes a base material and a film formed by thermal spraying of ceramic on a surface of the base material. The film is formed of ceramic which includes at least one kind of element selected from the group consisting of B, Mg, Al, Si, Ca, Cr, Y, Zr, Ta, Ce and Nd. In addition, at least a portion of the film is sealed by a resin.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: August 24, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kouji Mitsuhashi, Hiroyuki Nakayama, Nobuyuki Nagayama, Tsuyoshi Moriya, Hiroshi Nagaike
  • Patent number: 7780814
    Abstract: A plasma reactor for processing a workpiece in a reactor chamber having a wafer support pedestal within the chamber and process gas injection apparatus, an RF bias power generator coupled to the wafer support pedestal and having a bias frequency, a source power applicator, an RF source power generator having a source frequency and a coaxial cable coupled between the RF source power generator and the source power applicator includes a filter connected between the coaxial cable and the source power applicator that enhances uniformity of etch rate across the wafer and from reactor to reactor. The filter includes a set of reflection circuits coupled between the source power applicator and a ground potential and being tuned to, respectively, the bias frequency and intermodulation products of the bias frequency and the source frequency.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John A. Pipitone, Kenneth D. Smyth, Mei Po (Mabel) Yeung
  • Patent number: 7771536
    Abstract: The substrate processing apparatus according to the present invention is aimed to stably and efficiently perform a deposition process on a substrate W. The substrate processing apparatus supports the substrate W in a position facing a heater portion and thus rotates a holding member holding the substrate W. Furthermore, the heating portion houses a SiC heater and a heat reflecting member in an internal portion of a quartz bell jar made of transparent quartz, and depressurizes an internal space of a processing vessel and an internal space of the quartz bell jar at the same time; thereby allowing the thickness of the quartz bell jar to be thinner, and thus improving thermal conductivity of heat from the SiC heater and preventing contamination by the SiC heater.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: August 10, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Takahiro Horiguchi, Ryo Kuwajima
  • Patent number: 7771562
    Abstract: An integrated capacitively-coupled and inductively-coupled device is provided for plasma etching that may be used as a primary or secondary source for generating a plasma to etch substrates. The device is practical for processing advanced semiconductor devices and integrated circuits that require uniform and dense plasma. The invention may be embodied in an apparatus that contains a substrate support, typically including an electrostatic chuck, that controls ion energy by capacitively coupling RF power to the plasma and generating voltage bias on the wafer relative to the plasma potential. An etching electrode is provided opposite the substrate support. An integrated inductive coupling element is provided at the perimeter of the etching electrode that increases plasma density at the perimeter of the wafer, compensating for the radial loss of charged particles toward chamber walls, to produce uniform plasma density above the processed wafer.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 10, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Patent number: 7744698
    Abstract: Disclosed is a vaporizer constituted of a dispersing section 8 and a vaporizing section 22. The dispersing section 8 comprises a gas introduction port 4 for introducing a carrier gas 3 under pressure into a gas passage, means for feeding raw material solutions 5a and 5b to the gas passage, and a gas outlet 7 for delivering the carrier gas containing the raw material solutions to the vaporizing section 22. The vaporizing section 22 comprises a vaporizing tube 20 having one end connected to a reaction tube of the MOCVD system and having the other end connected to the gas outlet 7 of the dispersing section 8, and heating means for heating the vaporizing tube 20. The vaporizing section 22 serves to heat and vaporize the raw material solution containing carrier gas 3 delivered from the dispersing section 8. The dispersing section 8 includes a dispersing section body 1 having a cylindrical hollow portion, and a rod 10 having an outer diameter smaller than the inner diameter of the cylindrical hollow portion.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: June 29, 2010
    Assignees: Kabushiki Kaisha Watanabe Shoko
    Inventors: Masayuki Toda, Masaki Kusuhara, Mikio Doi, Masaru Umeda, Mitsuru Fukagawa, Yoichi Kanno, Osamu Uchisawa, Kohei Yamamoto, Toshikatu Meguro
  • Patent number: 7717061
    Abstract: A processing apparatus is disclosed which is capable of switching supplies of a raw material gas and a reducing gas alternately, while continuously forming a plasma of the reducing gas. An excitation device (12) excites a reducing gas supplied thereinto, and the excited reducing gas is supplied into a process chamber (2). A switching mechanism (20) is arranged between the excitation device (12) and the process chamber (2), and a bypass line (22) is connected to the switching mechanism (20). The switching mechanism (20) switches the flow of the excited reducing gas from the excitation device (12) between the process chamber (2) and the bypass line (22).
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 18, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Tadahiro Ishizaka, Naoki Yoshii, Kohei Kawamura, Yukio Fukuda, Takashi Shigeoka, Yasuhiko Kojima, Yasuhiro Oshima, Junichi Arami, Atsushi Gomi
  • Patent number: 7708859
    Abstract: A gas distribution system for supplying different gas compositions to a chamber, such as a plasma processing chamber of a plasma processing apparatus is provided. The gas distribution system can include a gas supply section, a flow control section and a switching section. The gas supply section provides first and second gases, typically gas mixtures, to the flow control section, which controls the flows of the first and second gases to the chamber. The chamber can include multiple zones, and the flow control section can supply the first and second gases to the multiple zones at desired flow ratios of the gases. The gas distribution system can continuously supply the first and second gases to the switching section and the switching section is operable to switch the flows of the first and second gases, such that one of the first and second process gases is supplied to the chamber while the other of the first and second gases is supplied to a by-pass line, and then to switch the gas flows.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: May 4, 2010
    Assignee: Lam Research Corporation
    Inventors: Zhisong Huang, Jose Tong Sam, Eric H. Lenz, Rajinder Dhindsa, Reza Sadjadi