Patents Examined by Rebecca Lee
  • Patent number: 9708677
    Abstract: The invention relates to a method of heat treating a cast iron having graphite particles, in particular a cast iron having graphite nodules with a substantially spherical geometry. The method comprises the step of subjecting the cast iron to a first austenitizing temperature, in order to obtain a cast iron having an austenite matrix with a substantially homogeneous carbon content. Subsequently, at least part of the cast iron is subjected to at least a second, different austenitizing temperature in order to change, in at least part of the cast iron, the carbon concentration in a part of the matrix surrounding the (spherical) geometry of the graphite particles. The method yields improved controllability on strength properties characteristics for cast irons including malleable irons, in particular for ductile iron.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: July 18, 2017
    Assignee: TDI VALUE WEB B.V.;
    Inventors: Pieter Cornelis Van Eldijk, Abraham Van Eldijk
  • Patent number: 9702641
    Abstract: An iron-based braze filler alloy consists of from 9 wt % to 30 wt % Cr; from 5 wt % to 25 wt % Ni; from 0.5 wt % to 9 wt % Mo; from 1 wt % to 5 wt % Mn; from 0 wt % to 1 wt % N; from 6 wt % to 20 wt % Si; from 0.1 wt % to 15 wt % P; and is balanced with Fe.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: July 11, 2017
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Erik Sjodin
  • Patent number: 9691553
    Abstract: A method for producing an anode body in a capacitor, which includes making a molded body by molding a tungsten powder and making an anode body by sintering the molded body, which includes a step of bringing the tungsten powder or the molded body thereof into contact with a solution of a silicon compound before sintering the molded body so as to adjust the silicon content in the anode body to 0.05 to 7 mass %.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: June 27, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Kazumi Naito, Shoji Yabe
  • Patent number: 9683271
    Abstract: An impeller for stirring a melt pool includes: an impeller body extending in the length direction; a blowing nozzle which is provided in such a way as to pass through one part at the bottom end of the impeller body; and a blade provided on the upper part of the impeller body. As a result, when the impeller is used, a stirring flow produced due to the blade and a stirring flow due to substances blown into the melt-pool via the blowing nozzle correspond to each other, and the two flows are combined such that the overall stirring force is improved. Consequently, it is possible to improve the efficiency of stirring by the impeller as compared with hitherto, and, as a result, refining efficiency in the refining step is improved as the rate of reaction between the melt-pool and additives is increased.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: June 20, 2017
    Assignee: POSCO
    Inventors: Min Ho Song, Wook Kim, Soo Chang Kang, Woong Hee Han, Jung Ho Park
  • Patent number: 9677161
    Abstract: The invention relates to a method for thermally treating an aluminium workpiece, comprising the steps of providing an aluminium workpiece, which is essentially in the T4 structural state, and exposing a first portion of the workpiece to a first precipitation hardening process by artificial ageing to change the structural state of the first portion of the workpiece, wherein a part of the workpiece is actively cooled during the first precipitation hardening process, so that a second portion of the workpiece essentially remains in the same structural state during the first precipitation hardening process. The invention further relates to an apparatus for thermally treating an aluminium workpiece and to an aluminium workpiece, especially producible with a method according to the invention.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: June 13, 2017
    Assignee: Hydro Aluminium Rolled Products GmbH
    Inventor: Simon Miller-Jupp
  • Patent number: 9677146
    Abstract: A hot-rolled austenitic manganese steel strip having a chemical composition in percent by weight of 0.4%?C?1.2%, 12.0%?Mn?25.0%, P?0.01% and Al?0.05% has a product of elongation at break in % and tensile strength in MPa of above 65,000 MPa %, in particular above 70,000 MPa %. A cold-rolled austenitic manganese steel strip having the same chemical composition achieves a product of elongation at break in % and tensile strength in MPa of above 75,000 MPa %, in particular above 80,000 MPa %.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: June 13, 2017
    Assignee: VOESTALPINE STAHL GMBH
    Inventors: Reinhold Schneider, Ludovic Samek, Enno Arenholz, Klemens Mraczek, Mario Hartl
  • Patent number: 9669485
    Abstract: A method for producing a welded part from two components, where at least one of the components has a hardened surface. The method can include case hardening the surface of one of the components using a salt bath nitriding process and then welding the case hardened first component to the second component by gas metal arc welding (GMAW).
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: June 6, 2017
    Assignee: Whirlpool Corporation
    Inventors: Daniel L. Fondriest, Kurt Werner, Richard J. Widman, Luke J. Wilkins, Steven J. Flick
  • Patent number: 9670573
    Abstract: A method for the hot-dip coating of metal strip, in particular steel strip, in a metallic melting bath (3) is disclosed. In the method, the metal strip (1) to be coated is heated in a continuous furnace (2) and is introduced into the melting bath (3) through a snout (6) which is connected to the continuous furnace and which is immersed into the melting bath. To be able to satisfy the requirements placed on the coated strip (1) with regard to good deformability of the strip, as far as possible without cracking and peeling, and with regard to high anti-corrosion protection in a more effective and reliable manner, the disclosure proposes that, in the region delimited by the snout (6), a melt is used which is intentionally implemented differently, in terms of its chemical composition, than the chemical composition of the melt used in the melting bath (3).
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: June 6, 2017
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Jegor Bergen, Frank Spelleken, Michael Peters, Manuela Ruthenberg, Friedhelm Macherey, Florian Spelz
  • Patent number: 9670572
    Abstract: The invention relates to a method of post-built up heat treatment of an additively manufactured high strength component made of a gamma-prime strengthened superalloy based on Ni or Co or Fe or combinations thereof. An application of a rapid heating-up rate of 25 to 60° C./min in a specific temperature range during the first post-built heat treatment after additive manufacturing avoids or at least minimizes the gamma-prime precipitation in the component during heat-up. This results in crack-free components/articles compared to significant cracking present in conventionally heat treated components.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: June 6, 2017
    Assignee: ANSALDO ENERGIA IP UK LIMITED
    Inventors: Thomas Etter, Roman Engeli, Andreas Kuenzler
  • Patent number: 9662708
    Abstract: The invention relates to a method for producing a green compact, said green compact comprising at least two partial green compacts, each partial green compact being compacted and joined from at least one powdery material in one working cycle. Particularly, two, three, four or more than four partial green compacts can be compacted and joined in one working cycle.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: May 30, 2017
    Assignee: GKN Sinter Metals Holding GmbH
    Inventors: Rainer Schmitt, Antonio Casellas
  • Patent number: 9657364
    Abstract: The present invention has as its object the provision of hot rolled steel sheet (hot coil) for line pipe use in which API5L-X80 standard or better high strength and low temperature toughness and ductile fracture arrest performance are achieved and a method of production of the same. For this purpose, the hot rolled steel sheet of the present invention comprises C, Si, Mn, Al, N, Nb, Ti, Ca, V, Mo, Cr, Cu, and Ni in predetermined ranges and a balance of Fe and unavoidable impurities, in which the microstructure is a continuously cooled transformed structure, in which continuously cooled transformed structure, precipitates containing Nb have an average size of 1 to 3 nm and are included dispersed at an average density of 3 to 30×1022/m3, granular bainitic ferrite and/or quasi-polygonal ferrite are included in 50% or more in terms of fraction, furthermore, precipitates containing Ti nitrides are included, and they have an average circle equivalent diameter of 0.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: May 23, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tatsuo Yokoi, Hiroshi Abe, Osamu Yoshida
  • Patent number: 9644250
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width ? of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I(200)/I(220)) of intensity of diffraction of (I(200)) from the (200) plane in the sheet surface to intensity of diffraction of (I(220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 9, 2017
    Assignee: KOBE STEEL, LTD.
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Patent number: 9631260
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width p of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I (200) /I (220)) of intensity of diffraction of (1 (200)) from the (200) plane in the sheet surface to intensity of diffraction of (I (220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: April 25, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Patent number: 9617629
    Abstract: The invention includes a copper-nickel-zinc alloy with the following composition in weight %: Cu 47.0 to 49.0%, Ni 8.0 to 10.0%, Mn 0.2 to 0.6%, Si 0.05 to 0.4%, Pb 1.0 to 1.5%, Fe and/or Co up to 0.8%, the rest being Zn and unavoidable impurities, wherein the total of the Fe content and double the Co content is at least 0.1 weight % and wherein mixing silicides containing nickel, iron and manganese and/or containing nickel, cobalt and manganese are stored as spherical or ellipsoidal particles in a structure consisting of an ?- and ?-phase. The invention further relates to a method for producing semi-finished products from a copper-nickel-zinc alloy.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 11, 2017
    Assignee: WIELAND-WERKE AG
    Inventors: Hans-Achim Kuhn, Rudolf Liebsch
  • Patent number: 9598753
    Abstract: A high strength thin steel sheet that is mainly used for structural members and inner and outer panels for a vehicle, a galvanized steel sheet, and methods of manufacturing the same. The high strength thin steel sheet for superior press formability includes, by weight percent, 0.06 to 0.4% C, 1.0 to 5.0% Mn, 0.05 to 2.5% Si, 0.01 to 2.0% Ni, 0.02 to 2% Cu, 0.01 to 0.04% Ti, 0.05 to 2.5% Al, 0.005 to 0.1% Sb, 0.0005 to 0.004% B, 0.007% or less N, and balance Fe and inevitable impurities, and meeting relation of Ni+0.5×Mn+0.3×Cu>0.9, which is defined as Ni*, and Al/Ni*<1.3 at a same time, and relation of Ti?0.028×Al. This thin steel sheet is galvanized or galvannealed.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: March 21, 2017
    Assignee: POSCO
    Inventors: Jai Hyun Kwak, Kwang Geun Chin
  • Patent number: 9592575
    Abstract: The weld metal of the present invention is formed by gas shield arc welding using a flux-cored wire, has a predetermined chemical component composition, and contains 20% or more of Ti. The amount of Ti-containing oxide particles having a circle-equivalent diameter of 0.15-1.0 ?m is at least 5000 per square mm, the amount of V per total mass of weld metal present as a compound within the weld metal is 0.002% or more, and the average circle equivalent diameter of V-containing carbide present in the weld metal is 15 nm or less.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: March 14, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Hidenori Nako, Takuya Kochi, Wataru Urushihara, Munenobu Sato, Yoshihiko Kitagawa
  • Patent number: 9587298
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: March 9, 2013
    Date of Patent: March 7, 2017
    Assignee: ARCONIC INC.
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Patent number: 9587319
    Abstract: A hot-rolled steel sheet has an average value of the X-ray random intensity ratio of a {100} <011> to {223} <110> orientation group at least in a sheet thickness central portion that is in a sheet thickness range of ? to ? from a steel sheet surface of 1.0 to 6.0, an X-ray random intensity ratio of a {332} <113> crystal orientation of 1.0 to 5.0, rC which is an r value in a direction perpendicular to a rolling direction of 0.70 to 1.10, and r30 which is an r value in a direction that forms an angle of 30° with respect to the rolling direction of 0.70 to 1.10.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: March 7, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Nobuhiro Fujita, Kunio Hayashi, Riki Okamoto, Manabu Takahashi, Tetsuo Kishimoto, Hiroshi Yoshida
  • Patent number: 9580766
    Abstract: The invention relates to a hot-rolled ferritic steel sheet, the composition of the steel of which comprises, the contents being expressed by weight: 0.001?C?0.15%, Mn?1%, Si?1.5%, 6%?Al?10%, 0.020%?Ti?0.5%, S?0.050%, P?0.1%, and, optionally, one or more elements chosen from: Cr?1%, Mo?1%, Ni?1%, Nb?0.1%, V?0.2%, B?0.010%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting, the average ferrite grain size dIV measured on a surface perpendicular to the transverse direction with respect to the rolling being less than 100 microns.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: February 28, 2017
    Assignee: ArcelorMittal France
    Inventors: Astrid Perlade, Xavier Garat, Jean-Louis Uriarte, Olivier Bouaziz, Josee Drillet
  • Patent number: 9574250
    Abstract: Provided is a method for fabricating a stepped forged material that can realize a uniform microscopic structure in both the large diameter flange portion and the small diameter shaft portion. This method for fabricating a stepped forged material comprises the following steps: a step for obtaining a primary forged material in which an austenite stainless steel billet is heated to 1000-1080° C., and, without any further heating, the material is forged by means of reciprocal forging into a round rod having along the entire length thereof a forging ratio of 1.5 or greater; a step for obtaining a secondary forged material, that forms the large diameter flange portion and the small diameter shaft portion, in which without reheating, the small diameter shaft portion is formed by means of reciprocal forging at a temperature where the surface temperature of the primary forged material never falls more than 200° C.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: February 21, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Shinya Nagao, Etsuo Fujita