Patents Examined by Rebecca Lee
  • Patent number: 9551052
    Abstract: A rare-earth sintered magnet includes 12.0 at % to 15.0 at % of rare-earth element(s), which is at least one element selected from the group consisting of Nd, Pr, Gd, Tb, Dy and Ho and at least 50% of which is Nd and/or Pr; 5.5 at % to 8.5 at % of boron (B); a predetermined percentage of additive metal A; and iron (Fe) and inevitably contained impurities as the balance. The predetermined percentage of additive metal A includes at least one of 0.005 at % to 0.30 at % of silver (Ag), 0.005 at % to 0.40 at % of nickel (Ni), and 0.005 at % to 0.20 at % of gold (Au).
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: January 24, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Hideyuki Morimoto, Tomoori Odaka
  • Patent number: 9545669
    Abstract: The present invention relates to layer manufacturing, more particularly to a method for additive layer manufacturing of objects comprised of more than one material with free-form capability for all included materials. The invention can for example be used for producing packaging for Microsystems where the ceramic acts as an insulator and the secondary material is used to produce electrical or optical 3D conductor lines or electrical or optical 3D vias. The fine powder used in this method enables it to be used for building components with small feature size and demand for high precision. Other intended uses for this method is to build small mechanical precision parts or grinding tools, dental objects or medical implants.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: January 17, 2017
    Assignee: Digital Metal AB
    Inventors: Thorbjörn Åklint, Elis Carlstrom, Per Johander, Elisabeth Johander, Johanna Stiernstedt
  • Patent number: 9528175
    Abstract: A pre-weld heat treatment of the nickel based superalloy including heating a nickel based superalloy (e.g., IN939) casting to 2120° F. at a rate of 2° F. per minute, and then soaking the casing for one hour at 2120° F. The casting is then cooled in stages including slowly cooling the casting at a rate of 1° F. per minute to about 1900° F. and holding at that temperature for about 10 minutes. Then the casting is further slowly cooled at a rate of 1° F. per minute to about 1800° F. and holding at that temperature for about 10 minutes, and further slowly cooled to a temperature range of 1650° F. to 1450° F., and then fast cooled to room temperature. The pre-weld heat treatment may optionally include a step of heating the casting to about 1850° F. at a rate of 50° F. per minute before slowly heating to 2120° F.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: December 27, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ravishankar P. Angal, Allister William James
  • Patent number: 9513072
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 6, 2016
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Patent number: 9513071
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: December 6, 2016
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Patent number: 9511454
    Abstract: A welding activated flux for structural alloy steels including 40-50 wt % of SiO2, 25-30 wt % of MoO3, 5-10 wt % of TiO2 and 10-20 wt % of Cr2O3 is disclosed. Accordingly, with the use of the welding activated flux, the depth of the weld is significantly increased, thereby enhancing the mechanical strength of the weldment and reducing the distortion of the weldment.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: December 6, 2016
    Assignee: NATIONAL PINGTUNG UNIVERSITY OF SCIENCE & TECHNOLOGY
    Inventors: Kuang-Hung Tseng, Nai-Shien Wang
  • Patent number: 9506132
    Abstract: A method for manufacturing a heavy wall steel pipe includes a cooling step in which a steel pipe, with a wall thickness of ½ inch or more, that has been heated to the gamma range is dipped in water while supporting and rotating the steel pipe about the axis of pipe, an axial stream which is a water flow in the direction of axis of pipe is applied to the inside surface of the steel pipe under rotation in the water, and an impinging stream which is a water flow impinging on the outer surface of the pipe is applied to the outer surface of the steel pipe under rotation in the water.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: November 29, 2016
    Assignee: JFE STEEL CORPORATION
    Inventors: Tatsuro Katsumura, Hiroyuki Fukuda, Koji Sugano, Kazutoshi Ishikawa, Yasuhide Ishiguro
  • Patent number: 9493861
    Abstract: The present invention provides a method for producing AlMn strip or sheet for making components by brazing, as well as the products obtained by said method. In particular this method is related to fin materials used in heat exchangers. The fins can be delivered with or without a cladding depending on application. Rolling slabs are produced from a melt which contains 0.3-1.5% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.3% each of elements from group IVb, Vb, or VIb elements, and unavoidable impurity elements, as well as aluminum as the remainder in which the rolling slabs prior to hot rolling are preheated at a preheating temperature of less than 550° C., preferably between 400 and 520° C., more preferably between 450 and 520° C. to control the number and size of dispersoid particles, and the preheated rolling slab is hot rolled into a hot strip. The strip is thereafter cold rolled into a strip with a total reduction of at least 90%, and the cold rolled strip is heat treated to obtain a 0.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: November 15, 2016
    Assignee: GRÄNGES SWEDEN AB
    Inventors: Anders Oskarsson, Hans-Erik Ekstrom, Richard Westergard, Stian Tangen
  • Patent number: 9489978
    Abstract: Provided is a method for surface-treating a metal component, whereby a pseudo-plated layer can be formed on a surface of a metal component, and quality equivalent to plating or other coating process can be obtained. The method includes a chemical polishing step scraping a surface of a base plate formed into a given shape through chemical polishing by 0.5 micrometer or more, and a heat treat pseudo-plating step forming a pseudo-plated layer on the surface through a heat treatment conducted by heating the base plate at a solution treatment temperature or above, for example, 850 degrees C. or above, preferably approximate 1040 degrees C., in a reducing atmosphere after the polishing step.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 8, 2016
    Assignee: NHK SPRING CO., LTD.
    Inventor: Tatsuji Tamura
  • Patent number: 9453269
    Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group of {100}<011> to {223}<110>, which is represented by an arithmetic average of pole density of each orientation of {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> in a center portion of a sheet thickness which is a range of the sheet thickness of ? to ? from a surface of the steel sheet, is 1.0 or more and 4.0 or less, the pole density of a crystal orientation of {332}<113> is 1.0 or more and 4.8 or less, an average grain size in a center in the sheet thickness is 10 ?m or less, and a microstructure includes, by a structural fraction, pearlite more than 6% and ferrite in the balance.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: September 27, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
  • Patent number: 9441695
    Abstract: High cleanliness spring steel useful in manufacturing a spring with SiO2-based inclusions being extremely controlled and excellent in fatigue properties is provided. High cleanliness spring steel which is steel containing; C: 1.2% (means mass %, hereafter the same with respect to the component) or below (not inclusive of 0%), Si: 1.2-4%, Mn: 0.1-2.0%, Al: 0.01% or below (not inclusive of 0%), and the balance comprising iron with inevitable impurities, wherein; the total of oxide-based inclusions of 4 or above of L (the large diameter of an inclusion)/D (the short diameter of an inclusion) and 25 ?m or above of D and oxide-based inclusions of less than 4 L/D and 25 ?m or above of L, in the oxide-based inclusions of 25 mass % or above of oxygen concentration and 70% (means mass %, hereafter the same with respect to inclusions) or above of SiO2 content when Al2O3+MgO+CaO+SiO2+MnO=100% is presumed, out of inclusions in the steel, is 20 nos./500 g or below.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: September 13, 2016
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomoko Sugimura, Sei Kimura, Koichi Sakamoto, Atsuhiko Yoshida, Takeshi Inoue
  • Patent number: 9435012
    Abstract: Provided are a method for producing powder for a magnet, and methods for producing a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material. Magnetic particles constituting the powder each have a texture in which grains of a phase of a hydride of a rare-earth element are dispersed in a phase of an iron-containing material. The uniform presence of the phase of the iron-containing material in each magnetic particle results in powder having excellent formability, thereby providing a powder compact having high relative density. The powder is produced by heat-treating rare-earth-iron-based alloy powder in a hydrogen atmosphere to separate the rare-earth element and the iron-containing material and then forming a hydride of the rare-earth element. The powder is compacted. The powder compact is heat-treated in vacuum to form a rare-earth-iron-based alloy material.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 6, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toru Maeda
  • Patent number: 9435011
    Abstract: An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850° C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm2 sec)]10?11 during a 1000 hour immersion in liquid FLiNaK at 850° C., in the range of 3 to 10.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: September 6, 2016
    Assignee: UT-Battelle, LLC
    Inventors: David E. Holcomb, Govindarajan Muralidharan, Dane F. Wilson
  • Patent number: 9427792
    Abstract: A method for producing superheater tubes and connecting pipes and assembling superheater tubes inside a steam generator tube wall includes preparing tubes composed of precipitation-hardened nickel-based alloys in a solution-annealed state for the straight tubes, the bends, and the connecting pipes in a workshop and preparing sleeves composed of a material that is not to be heat treated in a shop. The bends and the connecting pipes are manufactured in the workshop using bending tools and then the straight tubes, the bends and the connecting pipes are precipitation hardened in the workshop in a first heating device. The superheater tubes are manufactured in the workshop by connecting the straight tubes and the bends with weld seams, and connecting the sleeves with the connecting pipes with weld seams. The weld seams between straight pipes and bends as well as the weld seams between sleeves and connecting pipes are precipitation hardened in the workshop with a second heating devices.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: August 30, 2016
    Assignee: ALSTOM TECHNOLOGY LTD.
    Inventors: Ruben Hartwig, Andreas Helmrich, Daniel Mutter, Alois Schalk
  • Patent number: 9410583
    Abstract: The invention relates to a method for producing a friction element (3) comprising the steps: providing a metal main body (10), hardening the main body (10) on at least part of its surface (11, 12) in a salt bath, wherein the salt bath hardening is the final method step, and no further processing of the hardened surface (11, 12) is performed. Furthermore, the invention relates to a friction element produced according to this method and a friction component comprising the latter.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 9, 2016
    Assignee: Miba Frictec GmbH
    Inventors: Zisis Tsioptsias, Gerhard Hartner
  • Patent number: 9399271
    Abstract: One embodiment of the present invention is a unique method for brazing an assembly. Another embodiment is a unique method of heat treating an object. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for heat treating and/or brazing. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 26, 2016
    Assignee: Rolls-Royce Corporation
    Inventor: Quinlan Yee Shuck
  • Patent number: 9394595
    Abstract: A high carbon steel sheet having a chemical composition containing C: 0.20% to 0.50%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.02% or less, sol. Al: 0.08% or less, N: 0.02% or less, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, and a microstructure composed of ferrite and cementite, wherein the fraction of pro-eutectoid ferrite, among the ferrite, in the whole steel microstructure is 20% or more and less than 50%, the average grain size dc of the cementite in the region from the position at one-quarter of the sheet thickness of the steel sheet to the sheet thickness center is 0.50 to 1.5 ?m, and the average grain size ds of the cementite in the region from the surface of the steel sheet to the position at one-quarter of the sheet thickness satisfies ds/dc?0.8.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 19, 2016
    Assignee: JFE STEEL CORPORATION
    Inventors: Takashi Kobayashi, Nobuyuki Nakamura, Yoshimasa Funakawa
  • Patent number: 9394582
    Abstract: The invention relates to a method and to an apparatus for producing pipes made of steel. According to the invention, within a period of time of no more than 20 seconds after the last deformation at a temperature greater than 700° C., but less than 1050° C., during passage a cooling medium is applied with elevated pressure onto the outside circumference of the pipe over a length of greater than 400 times the pipe wall thickness in a quantity which during rapid cooling provides an equivalent cooling speed of greater than 1° C./second of the pipe wall over the pipe length to a temperature in the range of 500° C. to 250° C., whereupon further cooling of the pipe down to room temperature is carried out by exposure to air.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: July 19, 2016
    Assignee: VOESTALPINE TUBULARS GMBH & CO KG
    Inventor: Juergen Klarner
  • Patent number: 9371572
    Abstract: The present invention relates to a procedure for preparation by wet reduction method of nanometric particles of metallic silver, with diameter in the range of 1 to 100 nm and an average diameter of 20 to 40 nm, with monodispersion characteristics, stability greater than 12 months and in a wide range of concentrations. The process comprises 4 steps: a) preparation of the reducing agent solution, taken from the group of tannins and preferably being tannic acid; b) preparation of a solution of a soluble silver salt; c) reaction and, d) solid-liquid separation; the particle size is determined by the nature of the reducing agent and by the pH control of the currents. The final step is designed for separating and concentrating the material after which the user can prepare the product for integration thereof in the desired medium.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: June 21, 2016
    Assignee: Servicios Administrativos Penoles S.A. de C.V.
    Inventors: Jesús Manuel Martinez Martinez, Ricardo Benavides Pérez, José Gertrudis Bocanegra Rojas, Facundo Ruiz, Alma Guadalupe Vázquez Durán, Gabriel Alejandro Martinez Castañon
  • Patent number: 9368291
    Abstract: An highly porous electrically conducting film that includes a plurality of carbon nanotubes, nanowires or a combination of both. The highly porous electrically conducting film exhibits an electrical resistivity of less than 0.1 ?·cm at 25 C and a density of between 0.05 and 0.70 g/cm3. The film can exhibit a density between 0.50 and 0.85 g/cm3 and an electrical resistivity of less than 6×10?3 ?·cm at 25 C. Also included is a method of forming these highly porous electrically conducting films by forming a composite film using carbon nanotubes or nanowires and sacrificial nanoparticles or microparticles. At least a portion of the nanoparticles or microparticles are then removed from the composite film to form the highly porous electrically conducting film.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 14, 2016
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, John R. Reynolds, Rajib Kumar Das