Patents Examined by Rebecca Lee
  • Patent number: 9359662
    Abstract: An iron-carbon master alloy is described, with a C content of 0.3 to 8 wt % and an upper limit of alloying metals Ni<10 wt %, P<4 wt %, Cr<5 wt %, preferably<1 wt %, Mn<5 wt %, preferably<1 wt %, Mo<3 wt %, W<3 wt %, Cu<1 wt %, a particle size of >20 ?m and a hardness of <350 HV 0.01, and a method for the manufacture of said master alloy.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 7, 2016
    Assignee: TECHNISCHE UNIVERSITÄT WIEN
    Inventors: Christian Gierl-Mayer, Herbert Danninger, Yousef Hemmatpour
  • Patent number: 9362032
    Abstract: A high-strength non-oriented electrical steel sheet contains: in mass %, C: 0.010% or less; Si: not less than 2.0% nor more than 4.0%; Mn: not less than 0.05% nor more than 0.50%; Al: not less than 0.2% nor more than 3.0%; N: 0.005% or less; S: not less than 0.005% nor more than 0.030%; and Cu: not less than 0.5% nor more than 3.0%, a balance being composed of Fe and inevitable impurities. An expression (1) is established where a Mn content is represented as [Mn] and a S content is represented as [S], and not less than 1.0×104 pieces nor more than 1.0×106 pieces of sulfide having a circle-equivalent diameter of not less than 0.1 ?m nor more than 1.0 ?m are contained per 1 mm2 10?[Mn]/[S]?50??(1).
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 7, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Arita, Masahiro Fujikura, Hidekuni Murakami
  • Patent number: 9359663
    Abstract: Provided is a method for manufacturing a hot press formed steel member that has high strengths, an excellent balance between strength and ductility, and good deformation properties upon crush on collision (crashworthiness). The manufacturing method is highly efficient and allows a high degree of freedom with respect to the shape to be formed. The method manufactures a steel member by heating a steel sheet having a specific chemical composition and subjecting the steel sheet to at least one time of hot press forming. In the method, the heating temperature is equal to or higher than the Ac3 transformation temperature, and a starting temperature of the hot press forming is in the range from the heating temperature to martensite start (Ms) temperature. Cooling from [(Ms temperature)?150° C.] down to 80° C. is performed so that a tempering parameter (?) specified by Expression (1) is in the range from 7100 to 8030.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: June 7, 2016
    Assignee: Kobe Steel, Ltd.
    Inventors: Naoki Mizuta, Tatsuya Asai, Takayuki Yamano, Tetsuji Hoshika
  • Patent number: 9340845
    Abstract: A method for surface processing at least a portion of a component of zirconium or hafnium alloy, including at least one operation of nanostructuring a surface layer of the alloy so as to confer on the alloy over a thickness of at least 5 ?m a grain size which is less than or equal to 100 nm, the nanostructuring being carried out at a temperature which is less than or equal to that of the last thermal processing operation to which the component was previously subjected during its production. Component of zirconium or hafnium alloy processed in this manner.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: May 17, 2016
    Assignee: AREVA NP
    Inventor: Dominique Hertz
  • Patent number: 9334546
    Abstract: The present invention provides a rail weld treatment device for improving a resulting microstructure in and around an effected zone of a rail weld and of rails surrounding the rail weld. The device includes, but is not limited to a fixture clamping and centering assembly for engaging a rail head of a rail and a heating and cooling device connected with the fixture clamping and centering assembly to be positioned over the rail head. The fixture clamping and centering assembly comprises an engagement member which removably engages the rail head. The heating and cooling device includes a heating member for heating an effected zone of the rail weld and a cooling member for cooling the effected zone.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 10, 2016
    Assignee: EVRAZ INC. NA CANADA
    Inventors: Joseph Victor Kristan, Kenneth H. Reid
  • Patent number: 9328398
    Abstract: A method for recycling noble metals from electronic waste materials and apparatus thereof. The method comprises the following steps: mechanically breaking up the electronic waste materials; removing rubber and plastic materials by electrostatic separation; removing ferromagnetic metals by magnetic separation; removing residual rubber and plastic materials by microwave pyrolysis; removing low-melting-point metals by indirectly heating using microwave; separating the noble metals from one another in turn from low-melting-point metal to high-melting-point metal for recycle. The apparatus includes a microwave housing. A filtering screen is positioned on the inside wall of the housing horizontally, and vertically-arranged and open-ended heating pipes are positioned over the filtering screen. The method and apparatus can adequately recycle resources in the electronic waste materials.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: May 3, 2016
    Assignee: GEM CO., LTD.
    Inventor: Kaihua Xu
  • Patent number: 9327348
    Abstract: Preparation methods, compositions, and articles useful for electronic and optical applications are disclosed. Such methods reduce metal ions to metal nanowires in the presence of bromide ions, IUPAC Group 14 elements in their +2 oxidation state, and optionally chloride ions. The product nanowires are useful in electronics applications.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: May 3, 2016
    Inventors: Junping Zhang, David R. Whitcomb
  • Patent number: 9321103
    Abstract: In a finish heat treatment method and finish heat treatment apparatus for an iron powder, a raw iron powder is placed on a continuous moving hearth and continuously charged into the apparatus. In the pretreatment zone, the raw iron powder is subjected to a pretreatment of heating the raw iron powder in an atmosphere of hydrogen gas and/or inert gas at 450 to 1100° C. In decarburization, deoxidation, and denitrification zones, the pretreated iron powder is subsequently subjected to at least two treatments of decarburization, deoxidation, and denitrification. In the pretreatment zone, a hydrogen gas and/or an inert gas serving as a pretreatment ambient gas is introduced separately from an ambient gas used in the at least two treatments is introduced from the upstream side of the pretreatment zone and released from the downstream side so as to flow in the same direction as a moving direction of the moving hearth.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 26, 2016
    Assignee: JFE STEEL CORPORATION
    Inventors: Yasuhiko Sakaguchi, Toshio Maetani
  • Patent number: 9322598
    Abstract: The invention provides a process for the heat treatment of steel products, in particular of steel strips or sheets, in which the product is brought from a starting temperature to a target temperature in a booster zone having at least one burner; the burner is operated with a fuel, in particular a fuel gas, and an oxygen-containing gas which contains more than 21% oxygen; and the product is brought into direct contact with the flame generated by the burner, the air ratio ? within the flame being set as a function of the starting temperature and/or the target temperature.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: April 26, 2016
    Assignee: Linde Aktiengesellschaft
    Inventors: Herbert Eichelkraut, Hans-Joachim Heiler, Werner Högner, Fred Jindra, Rainhard Paul, Ola Ritzén
  • Patent number: 9312235
    Abstract: An aluminum-based alloy conductive wire used in semiconductor package is composed of 0.05 to 0.14 weight percent scandium (Sc), 0.01 to 0.1 weight percent zirconium (Zr), 0.01 to 0.1 weight percent silicon (Si) and the balance aluminum (Al), wherein the aluminum-based alloy conductive wire is made from high purity aluminum, aluminum-scandium alloy, aluminum-zirconium alloy and aluminum-silicon alloy by a melting treatment, a casting treatment, a solution treatment, a plastic processing and an aging treatment.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 12, 2016
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Ching-Shing Kang, Sung-Wei Yeh, Chin-Hsiang Shih
  • Patent number: 9302351
    Abstract: The invention relates to a method for joining two components (10, 12) made of a metal material, which are connected on two mutually associated joining surfaces (14, 16) by means of a joined connection, wherein at least one of the components (10) is strengthened in at least a partial region of the joining surface (14) thereof prior to joining. The invention further relates to a joined connection of two components (10, 12) made of a metal material.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: April 5, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Joachim Bamberg, Roland Hessert, Wilhelm Satzger, Thomas Mack, Alexander Gindorf, Martina Mack, Legal Representative
  • Patent number: 9303302
    Abstract: Disclosed is a steel having high manufacturability and better rolling-contact fatigue properties. The steel contains C of 0.65% to 1.30%, Si of 0.05% to 1.00%, Mn of 0.1% to 2.00%, P of greater than 0% to 0.050%, S of greater than 0% to 0.050%, Cr of 0.15% to 2.00%, Al of 0.010% to 0.100%, N of greater than 0% to 0.025%, Ti of greater than 0% to 0.015%, and O of greater than 0% to 0.0025% and further contains iron and unavoidable impurities. Al-containing nitrogen compound particles dispersed in the steel have an average equivalent circle diameter of 25 to 200 nm, and Al-containing nitrogen compound particles each having an equivalent circle diameter of 25 to 200 nm are present in a number density of 1.1 to 6.0 per square micrometer.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 5, 2016
    Assignee: Kobe Steel, Ltd.
    Inventor: Masaki Kaizuka
  • Patent number: 9290835
    Abstract: The invention provides a cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property comprising, in mass %, C: 0.0005-0.0040%, Si: 0.8% or less, Mn: 2.2% or less, S: 0.0005-0.009%, Cr: 0.4-1.3%, O: 0.003-0.020%, P: 0.045-0.12%, B: 0.0002-0.0010%, Al: 0.008% or less, N: 0.001-0.007%, and a balance of Fe and unavoidable impurities. Ultra-low-carbon steel retaining solute N and containing added Cr, P, B and O is used to produce hot-rolled and cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet that exhibit both high paint bake hardenability and ordinary-temperature non-aging property.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: March 22, 2016
    Assignee: Nippon Steel & Summitomo Metal Corporation
    Inventors: Naoki Yoshinaga, Naoki Maruyama, Manabu Takahashi, Natsuko Sugiura
  • Patent number: 9290823
    Abstract: Described herein are a method, an apparatus, and a system for metal processing that improves one or more properties of a sintered metal part by controlling the process conditions of the cooling zone of a continuous furnace using one or more cryogenic fluids. In one aspect, there is provided a method comprising: providing a furnace wherein the metal part is passed therethough on a conveyor belt and comprises a hot zone and a cooling zone wherein the cooling zone has a first temperature; and introducing a cryogenic fluid into the cooling zone where the cryogenic fluid reduces the temperature of the cooling zone to a second temperature, wherein at least a portion of the cryogenic fluid provides a vapor within the cooling zone and cools the metal parts passing therethrough at an accelerated cooling rate.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: March 22, 2016
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Zbigniew Zurecki, Ranajit Ghosh, Lisa Ann Mercando, Xiaoyi He, John Lewis Green, David Scott Nelson
  • Patent number: 9273372
    Abstract: Provided are a method for manufacturing a stabilizer and a heating device, the method being able to suppress the occurrence of unevenness in the hardness of a curved portion of a semimanufactured product of the stabilizer and reduce the process time in a tempering process. In electric heating in a first heating step (step A), the temperature of an inside portion of a shoulder can be steeply increased to a temperature (<UA) close to a target temperature (UA) by continuously passing an electric current. In electric heating in a second heating step (step C), the temperature difference between the maximum achieved temperature of the inside portion of the shoulder and the maximum achieved temperature of an outside portion thereof can be decreased by intermittently passing an electric current, thereby making it possible to set the maximum achieved temperatures to a desired target temperature (UA) or a temperature close thereto.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: March 1, 2016
    Assignee: NHK SPRING CO., LTD.
    Inventors: Yoshihiro Koshita, Yutaka Wakabayashi, Kosuke Takeo, Koichi Ito
  • Patent number: 9272912
    Abstract: The invention features methods and systems for recovering carbon dioxide, for producing commercial quality carbon dioxide (CO2) of 90% to +99% purity using, wet calcium carbonate lime mud produced in a recausticizing process that also produces caustic soda, for instance, Kraft paper pulp mill lime mud (a.k.a., “lime mud”) as a feedstock to a multi-stage lime mud calcination process. This process may be fueled with low, or negative cost “carbon-neutral” fuels such as waste water treatment plant (WWTP) sludge, biomass, precipitated lignins, coal, or other low cost solid fuels. High reactivity, high-quality calcined lime mud (a.k.a. re-burned lime, or calcine), required in the Kraft paper pulp mill's recausticizing process is also produced, and superheated high pressure steam and hot boiler feed-water is generated and exported to the mill's steam distribution and generation system as well as hot process water for use in the mill's manufacturing operation.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 1, 2016
    Inventor: Robert A. Rossi
  • Patent number: 9273370
    Abstract: A hot-rolled steel sheet has an average value of the X-ray random intensity ratio of a {100} <011> to {223} <110> orientation group at least in a sheet thickness central portion that is in a sheet thickness range of ? to ? from a steel sheet surface of 1.0 to 6.0, an X-ray random intensity ratio of a {332} <113> crystal orientation of 1.0 to 5.0, rC which is an r value in a direction perpendicular to a rolling direction of 0.70 to 1.10, and r30 which is an r value in a direction that forms an angle of 30° with respect to the rolling direction of 0.70 to 1.10.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: March 1, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Nobuhiro Fujita, Kunio Hayashi, Riki Okamoto, Manabu Takahashi, Tetsuo Kishimoto, Hiroshi Yoshida
  • Patent number: 9272327
    Abstract: A method for producing an aluminum-alloy shaped product, includes a step of forging a continuously cast rod of aluminum alloy serving as a forging material, in which the aluminum alloy contains Si in an amount of 10.5 to 13.5 mass %, Fe in an amount of 0.15 to 0.65 mass %, Cu in an amount of 2.5 to 5.5 mass % and Mg in an amount of 0.3 to 1.5 mass %, and heat treatment and heating steps including a step of subjecting the forging material to pre-heat treatment, a step of heating the forging material during a course of forging of the forging material and a step of subjecting a shaped product to post-heat treatment, the pre-heat treatment including treatment of maintaining the forging material at a temperature of ?10 to 480° C. for two to six hours.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: March 1, 2016
    Assignee: SHOWA DENKO K.K.
    Inventor: Yasuo Okamoto
  • Patent number: 9267190
    Abstract: Disclosed herein are a method and an apparatus for preparing a metal composite powder by using gas spraying. The method of preparing a metal composite powder by using gas spraying includes introducing a matrix phase in a chamber, including a reinforcing phase in the chamber, melting the introduced matrix phase to form a melt, adding the reinforcing phase in the melt, stirring the melt with the added reinforcing phase to form a melt mixture, atomizing the melt mixture together with a gas to form a metal composite powder containing the reinforcing phase, and collecting the metal composite powder formed.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: February 23, 2016
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Yong-Jin Kim, Sangsun Yang, Tae-Soo Lim
  • Patent number: 9260790
    Abstract: Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of ‘special’ low ? grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 ?m). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: February 16, 2016
    Assignee: INTEGRAN TECHNOLOGIES INC.
    Inventors: Gino Palumbo, Iain Brooks, Klaus Tomantschger, Peter Lin, Karl Aust, Nandakumar Nagarajan, Francisco Gonzalez