Patents Examined by Rebecca M Giere
  • Patent number: 11697118
    Abstract: Systems, methods, techniques, devices and apparatuses for detecting cancer. A handheld device which performs an automated analysis from a droplet of whole blood for other bodily fluid. The device is inexpensive, non-invasive, easy to use, and easily transportable, enabling better screening for a wider range of diseases, enabling the detection of metastases at an earlier stage, when interventions are more effective, enabling regular monitoring of patients receiving therapy or those in remission, and enabling a major contribution to the growing body of scientific evidence on how to treat certain cancers based on information gathered about the genomic profile of a tumor. In short, the present invention saves more lives, with fewer resources, and causing minimal harm than prior art techniques.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: July 11, 2023
    Inventor: Adrianna Davies
  • Patent number: 11693002
    Abstract: A method for image analysis of medical test results, comprising receiving information from a mobile device application regarding a test performed using a testing device, wherein the testing device includes a plurality of immunoassay test strips and at least one test function indicator on a surface thereof, wherein the mobile device application is configured to recognize the at least one test function indicator to trigger performance of one or more of the plurality of medical test functions, receiving at the server an image of the testing device from the mobile device application, determining by the server RGB values for a plurality of pixels of the image, normalizing by the server the RGB values into a single value, comparing the single value to a control value, and providing by the server a risk indicator, wherein the risk indicator indicates a likelihood of a presence of a medical condition.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 4, 2023
    Assignee: RELIANT IMMUNE DIAGNOSTICS, INC.
    Inventors: Jovan Hutton Pulitzer, Henry Joseph Legere, III
  • Patent number: 11693004
    Abstract: Disclosed are real-time insect surveillance sensor devices and methods that use a colorimetric readout for detecting insect disease vectors (such as mosquitoes which can transmit pathogens such as DENV, CHIKV, and ZIKV). The method involves an attractive or feeding solution combined with detector conjugates. The conjugate can specifically detect proteins present in insect saliva and/or proteins specific to mosquito-borne pathogens.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: July 4, 2023
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Bradley J. Willenberg, Sudipta Seal
  • Patent number: 11691144
    Abstract: There is provided an assembly, useable to screen sample fluids for predefined molecules, the comprising, a needle unit comprising n hollow needles, wherein n is greater than one; a flow cell unit comprising m flow cells, wherein m is greater than one, each flow cell having an input and an output, and a test surface on which ligands can be provided; a first selector valve unit which is fluidly connected between the needle unit and flow cell unit, which is operable to selectively fluidly connect any one of the n hollow needles with the m flow cells in the flow cell unit; a pumping means which is selectively operable to provide negative pressure; a second selector valve unit which is fluidly connected between the pumping means and the output of each flow cell. There are further provided methods of screening sample fluids for predefined molecule.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: July 4, 2023
    Assignee: Creoptix AG
    Inventor: Kaspar Cottier
  • Patent number: 11692927
    Abstract: The present invention provides diagnostic devices and methods for quantifying the amounts of an acute phase reactant (e.g., C-reactive protein (CRP) or serum amyloid A (SAA)) in a body fluid sample and/or white blood cell counts in blood sample. In particular, the present invention provides a rapid assay to detect CRP, SAA, and/or white blood cells in blood with high sensitivity and specificity.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: July 4, 2023
    Assignee: Essenlix Corporation
    Inventors: Stephen Y. Chou, Wei Ding
  • Patent number: 11684919
    Abstract: Methods for screening a plurality of sample fluids for molecules which can bind to predefined ligands, comprising, selecting one of a plurality of flow cell groups by fluidly connecting the selected flow cell group to a sample delivery unit; injecting a sample fluid to be screened from the sample delivery unit into the flow cells in the selected flow cell group; for each flow cell in the selected flow cell group, recording a signal using a sensor which represents the binding and/or the dissociation of molecules of the sample fluid to/from ligands on the test surface of that flow cell; carrying out a damage assessment step using said recorded signals; if it is determined that the test surface of a flow cell in the selected flow cell group is damaged, then fluidly connecting the other flow cell group to the sample delivery unit. There is further provided assemblies which can be used to implement the afore-mentioned methods.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 27, 2023
    Assignee: Creoptix AG
    Inventor: Kaspar Cottier
  • Patent number: 11680945
    Abstract: A test element for an assay includes: a cartridge having a housing which includes a priming pad capable of containing a liquid fluid, a wash port having an opening in the housing, and an opening for directly or indirectly applying a sample; and an assay device positioned within the cartridge in fluid communication with the wash port containing an analytical reagent.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: June 20, 2023
    Assignee: Ortho Clinical Diagnostics, Inc.
    Inventor: Raymond F. Jakubowicz
  • Patent number: 11680944
    Abstract: The present invention relates to systems that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device is provided for detecting an analyte in a biological sample. The device includes a first electrochemical sensor positioned on a substrate. The first electrochemical sensor includes an immobilized layer of antibody configured to bind to the analyte. The device further includes a second electrochemical sensor positioned adjacent to the first electrochemical sensor on the substrate, and a magnetic material that generates a magnetic field aligned with respect to the second electrochemical sensor. The magnetic field captures magnetic beads that have an immobilized layer of antibody configured to bind to the analyte, and concentrates the magnetic beads on or near a surface of the second electrochemical sensor.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: June 20, 2023
    Assignee: Abbott Point of Care Inc.
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, Cary James Miller, Kenneth Harold Hardage
  • Patent number: 11674960
    Abstract: An implantable diagnostic device in accordance with the present disclosure provides various benefits such as a compact size thereby allowing implanting of the device inside animate objects; low cost due to incorporation of inexpensive detection circuitry and the use of conventional IC fabrication techniques; re-usability by heating thereby allowing multiple diagnostic tests to be performed without discarding the device; and a configuration that allows performing of simultaneous and/or sequential diagnostic tests for detecting one or more similar or dissimilar target molecules concurrently or at different times.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: June 13, 2023
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Samuel Njoroge, Jingqing Huang
  • Patent number: 11668638
    Abstract: A microchannel for processing cells by compression of the cells including an inlet, ridges and an outlet. Each ridge including a compressive surface and a cell adhesion entity. The outlet configured to remove at least one of a first portion of the cells and a second portion of the cells from the microchannel. Each ridge oriented at an angle of from 25 degrees to 70 degrees relative to a center axis of the microchannel. The cell adhesion entity configured such that the first portion of the cells has a first adhesion property relative to the cell adhesion entity to follow a first trajectory through the microchannel. The cell adhesion entity further configured such that the second portion of the cells has a second adhesion property relative to the cell adhesion entity to follow a second trajectory through the microchannel. The first trajectory is different from the second trajectory.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: June 6, 2023
    Assignee: Georgia Tech Research Corporation
    Inventors: Todd Sulchek, Alexander Alexeev, Bushra Tasadduq
  • Patent number: 11655458
    Abstract: Embodiments of the present disclosure provide a target capturing apparatus and a manufacturing method thereof, and a target detecting method. The target capturing apparatus includes a cavity structure, the cavity structure includes: an inlet portion, an outlet portion and a capture region positioned between the inlet portion and the outlet portion, and the capture region includes a capture component, and a combination specifically combined with a to-be-captured target is included in the capture component so as to capture the target in a sample entering the cavity structure.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 23, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Defeng Mao
  • Patent number: 11649490
    Abstract: The invention relates to a new method of determining the presence, absence or one or more characteristics of multiple analytes. The invention concerns coupling a first analyte to a membrane containing a detector and investigating the first analyte using the detector. The invention also concerns coupling a second analyte to the membrane and investigating the second analyte. The first analyte is uncoupled form the membrane prior to investigating the second analyte. The invention also relates to polynucleotide sequencing.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: May 16, 2023
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: James Anthony Clarke, Marion Louise Crawford, James White
  • Patent number: 11650203
    Abstract: Disclosed are a one-pot biosensor and an immunoassay method using the same. The one-pot biosensor includes a photocatalyst substrate deposited with metal nanoparticles; and a reaction pad which is disposed on an upper surface of the photocatalyst substrate and includes a first binding material-fluorescent material complex specifically binding to a molecule to be detected, and the immunoassay method using the same. The one-pot biosensor may detect a target by once solution injection and has a size enough to be portable. Accordingly, since the one-pot biosensor can detect the target by only once solution injection without a washing step, because of a sensor platform capable of being easily used by an individual other than a diagnostic expert, it is predicted to be positioned as a means capable of confirming the health condition of the individual without seeing the doctor, such as a pregnancy diagnostic kit which has been currently commercialized.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: May 16, 2023
    Assignee: GIST (Gwangju Institute of Science and Technology)
    Inventors: Min Gon Kim, Ki Hyeun Kim, Eun Jung Jo, Dong Gu Hong
  • Patent number: 11635430
    Abstract: An expanded polytetrafluoroethylene substrate comprising a microporous microstructure, an interlayer over at least a portion of the microstructure, the interlayer containing a reactive functionality, and a functional layer attached to the interlayer, the interlayer comprising a sol-gel or a polyvinylalcohol. The functional layer of the substrate having functional sites with a density of at least 50 nanomoles/cm2.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: April 25, 2023
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Anit Dutta, Heidi Flannery, William P. Mortimer, Jr.
  • Patent number: 11635432
    Abstract: Disclosed herein are devices and methods that use aqueous two phase systems and lateral flow assays to detect target analytes in a sample. These devices and methods may be used to diagnose a disease or condition in a biological sample, such as blood or serum. In addition, these devices and methods may be used to detect allergens in a food samples or contaminants, such as environmental toxins, in water samples. Device and kit components may be conveniently assembled in a portable container and are amenable to actuation in most settings. The devices are simple to use, requiring a non-trained operator to simply add the sample to the device. Conveniently, the time it takes to detect the target analyte is very short. Thus, the devices and methods disclosed herein provide novel and useful means for point-of-care.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: April 25, 2023
    Assignee: The Regents of the University of California
    Inventors: Daniel Takashi Kamei, Yin To Chiu, Benjamin Ming Wu, Garrett L. Mosley
  • Patent number: 11633619
    Abstract: A measurement system includes a container configured to contain a solvated target molecule and at least one magnetoresistive (MR) sensor device including at least one MR sensor disposed near the container and configured to measure a magnetic field generated by the solvated target molecule, each of the at least one MR sensor including a pin layer having a pinned direction of magnetization, a free layer having a direction of magnetization that varies with an applied magnetic field, and a non-conductive layer separating the pin layer and the free layer.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: April 25, 2023
    Assignee: NEARFIELD ATOMICS INC.
    Inventor: John T. Butters
  • Patent number: 11618882
    Abstract: A microfluidic chip is provided for self-sorting highly motile, morphologically normal sperm cell with high DNA integrity from a fresh semen sample. The sperm self-sorting microfluidic chip has one or more inlet chambers, and sperm collection outlet chamber(s), and the middle of the channel features various micro-fabricated structures in different geometrical shapes and orientations, with varying periodicities and patterns, such as an array of micro-fabricated pillars that facilitate the transport of the active and healthy sperm into the outlet chamber.
    Type: Grant
    Filed: January 22, 2017
    Date of Patent: April 4, 2023
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Worcester Polytechnic Institute
    Inventors: Utkan Demirci, Erkan Tüzel, James Leonard Kingsley, Thiruppathiraja Chinnasamy
  • Patent number: 11614447
    Abstract: The present invention relates to analyte detection devices and methods of using such devices to detect minute quantities of a target analyte in a sample. In particular, the invention provides a method of detecting a target analyte in a sample comprising mixing the sample with a first detection conjugate and a second detection conjugate in solution, wherein the first and second detection conjugates comprise metallic nanostructures coupled to binding partners that are capable of specifically binding to the target analyte if present in the sample to form a complex between the first detection conjugate, the analyte, and the second detection conjugate, wherein a change in an optical signal upon complex formation indicates the presence of the target analyte in the sample. Methods of preparing nanostructures and nanoalloys, as well as nanostructures and nanoalloys conjugated to binding partners, are also described.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: March 28, 2023
    Assignee: Zoetis Services LLC
    Inventors: Rajesh K. Mehra, Vincent Chiang, Kenneth Aron, Jessica Frisz
  • Patent number: 11614446
    Abstract: To provide an immunochromatographic test device capable of accurate diagnosis even when an excess sample is introduced. Provided is the immunochromatographic test device consisting: a test strip; a lower housing including a plurality of support bases that support the test strip; and an upper housing including a dropping hole for dropping a sample into the test strip and a detection window in a direction in which the sample introduced from the dropping hole develops on the test strip, wherein a width of the support base that supports portion of the test strip exposed from the detection window is smaller than a width of the test strip, or wherein among the plurality of support bases, the width of the support base arranged on the lower housing between a position corresponding to the detection window and a position corresponding to the dropping hole is larger than the width of the test strip.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 28, 2023
    Assignee: SEKISUI MEDICAL CO., LTD.
    Inventors: Kanako Azuma, Shinya Okuyama, Kazunori Saito, Keigo Kohno, Motoki Morita
  • Patent number: 11585882
    Abstract: Superparamagnetic nanoparticle-based analytical method comprising providing a sample having analytes in a sample matrix, providing a point of care chip having analytical regions, each of which is a stationary phase having at least one or more sections, labeling each of the analytes with a superparamagnetic nanoparticle and immobilizing the labeled analytes in the stationary phase, providing an analytical device having a means for exciting the superparamagnetic nanoparticles in vitro and a means for sensing, receiving, and transmitting response of the excited superparamagnetic nanoparticles, placing the chip in the analytical device and exciting the superparamagnetic nanoparticles in vitro, sensing, receiving, and transmitting the response of the superparamagnetic nanoparticles, and analyzing the response and determining characteristic of the analytes, wherein the response of the superparamagnetic nanoparticles comprises harmonics.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: February 21, 2023
    Assignee: Mars Sciences Limited
    Inventors: Ronald T. Laborde, Yu Ge, Kevin N. Walda