Patents Examined by Rebecca M Giere
  • Patent number: 11585733
    Abstract: Contamination detection systems, kits, and techniques are described for testing surfaces for the presence of hazardous contaminants, while minimizing user exposure to these contaminants. Even trace amounts of contaminants can be detected. A collection kit provides a swab that is simple to use, easy to hold and grip, allows the user to swab large areas of a surface, and keeps the user's hands away from the surface being tested. The kit also provides open and closed fluid transfer mechanism to transfer the collected fluid to a detection device while minimizing user exposure to hazardous contaminants in the collected fluid. Contamination detection kits can rapidly collect and detect hazardous drugs, including trace amounts of antineoplastic agents, in healthcare settings at the site of contamination.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: February 21, 2023
    Assignee: Becton, Dickinson and Company
    Inventors: Weston F. Harding, Erik K. Witt, Austin Jason McKinnon, Ray Isaacson, Bart Peterson, Marcel Arantes Souza, Matthew Oshinski
  • Patent number: 11579068
    Abstract: The invention relates to a system (10) adapted to measure multiple biophysical characteristics of cells, the system (10) comprising: a microfluidic chip (12) provided with a microfluidic channel (14) which allows cells to flow through, the microfluidic channel (14) having an inlet (14a), an outlet (14b), and a lateral opening (14c) situated between the inlet (14a) and the outlet (14b); and a capacitive sensor (30) integrated in the microfluidic chip, adapted to obtain biophysical characteristics of a single cell in the microfluidic channel (14) by directly manipulating the single cell by sensor elements (31, 32) through the lateral opening (14c) of the microfluidic channel (14), the sensor (30) comprising a stationary part and an electrostatically driven movable part which is movable relative to the stationary part, the stationary part being fixed to the microfluidic chip (12), the movable part being arranged in the lateral opening (14c) of the microfluidic channel (14), wherein a portion of the sensor elemen
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 14, 2023
    Assignees: Centre National de la Recherche Scientifique (CNRS), Neuroindx, Inc., The Foundation for the Promotion of Industrial Science
    Inventors: Dominique Collard, Hiroyuki Fujita, Stanislav Karsten
  • Patent number: 11579153
    Abstract: A diagnostic biological array, kit or system, and method of using same unit for conducting simultaneously blood tests and determining the presence of diseases, the blood type, and blood quality of a blood sample and its applications.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: February 14, 2023
    Assignee: PRC BIOMEDICAL LTD.
    Inventor: Arie Huber
  • Patent number: 11577252
    Abstract: An example system includes an array of retaining features in a microfluidic cavity, an array of thermally controlled releasing features, and a controller coupled to each releasing feature in the array of releasing feature. Each retaining feature in the array of retaining features is to position capsules at a predetermined location, the capsules having a thermally degradable shell enclosing a biological reagent therein. Each releasing feature in the array of releasing features corresponds to a retaining feature and is to selectively cause degradation of the shell of a capsule. Each releasing feature is to generate thermal energy to facilitate degradation of the shell. The controller is to selectively activate at least one releasing feature in the array of thermally controlled releasing features to release the biological reagent in the capsules positioned at the retaining feature corresponding to the activated releasing feature.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: February 14, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Viktor Shkolnikov, Chien-Hua Chen
  • Patent number: 11573177
    Abstract: Provided herein are methods for capturing extracellular vesicles from a biological sample for quantification and/or characterization (e.g., size and/or shape discrimination) using an SP-IRIS system. Also provided herein are methods of detecting a biomarker on captured extracellular vesicles or inside the captured vesicles (e.g., intra-vesicular or intra-exosomal biomarkers).
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: February 7, 2023
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: M. Selim Ünlü, George G. Daaboul, Marcella Chiari
  • Patent number: 11567076
    Abstract: The object is to provide a lysis method, lysis treatment solution, detection method using an immunochromatographic device, and detection kit comprising an immunochromatographic device for detecting whether causative bacteria of mastitis are coliform bacteria or not by using milk of a livestock animal. There is provided a method for lysing coliform bacteria, which comprises the step of mixing a lysis agent containing a lytic enzyme, and at least one kind of anionic surfactant, and preferably further containing at least one kind of nonionic surfactant, with milk obtained form a livestock animal to lyse coliform bacteria existing in the milk. The lytic enzyme is preferably lysozyme.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: January 31, 2023
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Koji Maehana, Kenji Matsuyama
  • Patent number: 11565259
    Abstract: A microfluidic device can comprise at least one swept region that is fluidically connected to unswept regions. The fluidic connections between the swept region and the unswept regions can enable diffusion but substantially no flow of media between the swept region and the unswept regions. The capability of biological micro-objects to produce an analyte of interest can be assayed in such a microfluidic device. Biological micro-objects in sample material loaded into a microfluidic device can be selected for particular characteristics and disposed into unswept regions. The sample material can then be flowed out of the swept region and an assay material flowed into the swept region. Flows of medium in the swept region do not substantially affect the biological micro-objects in the unswept regions, but any analyte of interest produced by a biological micro-object can diffuse from an unswept region into the swept region, where the analyte can react with the assay material to produce a localized detectable reaction.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: January 31, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Mark P. White, Eric D. Hobbs, J. Tanner Nevill, Daniele Malleo, Steven W. Short
  • Patent number: 11529628
    Abstract: The present invention relates to an immunoassay apparatus and a method thereof. The immunoassay apparatus including a cartridge 13 in which a tube for T tip 9, a reaction tube 11, a tube for washing 3, and a tube for signal measurement 5 are integrally coupled or individually configured; a T tip 7 and a magnetic rod 31 used for performing reaction and washing processes while moving large magnetic particles m, capture materials, signal materials, and analyte materials with magnetic force by entering successively a plurality of tubes 3 and 5; a cartridge holder 15 in which the cartridge 13 is seated; and a heating member 17 that generates heat by being disposed at a region in which the reaction tube 11 is seated in the cartridge holder 15; is configured in a state where each of the different shapes of magnetic particles is bound with materials.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: December 20, 2022
    Assignee: EZDIA TECH INC.
    Inventors: Joo-ho Kim, Mun-tak Son
  • Patent number: 11531028
    Abstract: An antibody specifically reactive with an epitope of collagen type X alpha 1 comprised in the NC1 domain C-terminal amino acid sequence SFSGFLVAPM-COOH (SEQ ID NO: 1), and a method of immunoassay for detecting in a biological sample an epitope in the NC1 domain C-terminal amino acid sequence SFSGFLVAPM-COOH (SEQ ID NO: 1) of collagen type X alpha 1, by contacting the biological sample with the antibody, and determining the amount of binding of the antibody.
    Type: Grant
    Filed: February 1, 2020
    Date of Patent: December 20, 2022
    Assignee: Nordic Bioscience A/S
    Inventors: Anne Christine Bay-Jensen, Yi He, Morten Karsdal
  • Patent number: 11513115
    Abstract: The present application discloses methods and apparatus for detecting a complex including an analyte that include contacting a sample in a solution with a population of functionalized beads of a first type, which are magnetic functionalized beads and are functionalized to include a first moiety that associates with an analyte under suitable conditions, contacting the sample solution with a population of functionalized beads of a second type, which are functionalized to include a second moiety that associates with the analyte under suitable conditions, contact resulting in formation of a complex including one of the first type of functionalized bead, the analyte, and one of the second type of functionalized bead, and detecting the complex including the analyte by detecting magnetic fields produced by the magnetic functionalized bead and by detecting the functionalized bead of the second type associated with the analyte in the complex.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 29, 2022
    Assignee: Quantum Diamond Technologies Inc.
    Inventors: Colin B. Connolly, Jeffrey D. Randall, John C. Pena
  • Patent number: 11504714
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: capturing a population of non-cell particles into the array of wells in single-particle format; releasing, from the non-cell particles, a set of probes into the array of wells; capturing a population of cells into the array of wells in single-cell format; releasing biomolecules from each captured cell into the array of wells; and generating a set of genetic complexes comprising the biomolecules associated with a single captured cell and a subset of probes within individual wells of the array of wells.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 22, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Patent number: 11493507
    Abstract: An immunoassay for the detection of an analyte in a sample includes a plurality of moieties capable of binding to the analyte. Capture moieties, which are not specific for the same epitope, are bound to a solid substrate, and at least one epitope-specific detection moiety is bound to a detectable marker. The detectable marker is a large particle marker having a particle size of ?50 nm and ?5000 nm.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: November 8, 2022
    Assignee: Siemens Healthineers Nederland B.V.
    Inventors: Wendy Uyen Dittmer, Toon Hendrik Evers, Marco Hendrikus Hefti, David Walterus Cornelis Dekkers, Michael Franciscus Wilhelmus Cornelis Martens
  • Patent number: 11478798
    Abstract: A 3D microfluidic device for use as an in vitro lymph node is described. The microfluidic device has a body with a semi-circular inner wall and a first channel located adjacent along the semi-circular inner wall, the first channel corresponding to a subcapsular sinus region of a lymph node, a second channel located adjacent the first channel, the second channel corresponding to a reticular network, and a bottom cavity and top cavity, centrally located, corresponding to a paracortex and follicle of a lymph node, respectively. The various compartments of the device are separated by circumferentially and horizontally located rows of micro-pillars. A lab-on-a-chip device incorporating the microfluidic device is also described.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: October 25, 2022
    Assignee: Khalifa University of Science and Technology
    Inventors: Jeremy C M Teo, Cesare Stefanini, Amal Abdullah, Bisan Samara, Aya Shanti
  • Patent number: 11471882
    Abstract: Lateral flow devices, methods and kits for performing lateral flow assays are provided.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: October 18, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: William Strong, Clayton T. McKee
  • Patent number: 11467163
    Abstract: The present invention describes methods of determining the glycosylation signature and determining the level of a protein in a sample obtained from a patient. The present invention also describes use of a patient protein glycosylation profile to identify the presence or absence of a disease in subjects.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: October 11, 2022
    Assignees: Randox Laboratories Ltd.
    Inventors: Ivan McConnell, Peter Fitzgerald, John Lamont, Ciaran Richardson
  • Patent number: 11422133
    Abstract: A centripetal microfluidic platform comprised of a microfluidics disc and a reader for testing LAL-reactive substances in fluid samples is provided. The microfluidic disc may comprise at least two testing areas wherein each testing area includes a reservoir portion for receiving at least one fluid sample. The disc may comprise a distribution network portion in fluid communication with the reservoir portion. Each distribution network portion may comprise a distribution network of at least four (4) channels, wherein each channel has a metering portion and at least one analysis chamber portion. The analysis chamber portion may comprise a mixing chamber for mixing samples and reagents and an optical chamber portion that is compatible with an optical reader. The metering portion may be sized to meter an aliquot of the fluid sample for analysis in the analysis chamber portion. At least one analysis chamber portion has at least one reagent isolated therein.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: August 23, 2022
    Assignee: BL TECHNOLOGIES, INC.
    Inventors: Paul Charles Melanson, Richard Douglas Godec, Matthew Kaddeland Stonesmith, Darren Barry Smith, Chao Sun
  • Patent number: 11293931
    Abstract: Disclosed are methods for identifying a pregnant female who is susceptible to spontaneous preterm delivery. In particular, disclosed are methods for identifying a pregnant female who is susceptible to spontaneous preterm delivery based on ratios of steroids in samples obtained from the pregnant female. Further, the methods can include treating the pregnant female identified susceptible to spontaneous preterm delivery.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: April 5, 2022
    Assignee: Indiana University Research and Technology Corporation
    Inventor: Avinash Shivaputrappa Patil
  • Patent number: 11293923
    Abstract: The invention includes a bioelectronic interface comprising a self-assembling unit, wherein the self-assembling unit comprises a variant GPCR fusion protein bound to an S-layer fusion protein. The invention also encompasses a biosensor or device comprising the bioelectronic interface and methods of screening for a ligand of a GPCR.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 5, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Shuguang Zhang, Rui Qing, Andreas Breitwieser, Uwe Sleytr
  • Patent number: 11293922
    Abstract: The present disclosure provides methods and lateral flow devices for detecting a plurality of target analytes in a liquid sample. In some implementations, the disclosed lateral flow device comprises a housing unit, a capillary flow bed, a sample-receiving zone, a buffer-receiving zone, and a capture zone. The device is configured to control the flow of the sample and reagent buffer in a sequential manner with minimal mixing. In some implementations, the disclosed method is capable of detecting a plurality of target analytes in an assay by applying the binding agents and the signaling agents in separate or sequential steps.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: April 5, 2022
    Assignee: Verax Biomedical Incorporated
    Inventors: Yli Remo Vallejo, Gregory M. Lawrence, Adam P. Lousararian, Lisa Shinefeld
  • Patent number: 11292012
    Abstract: A method for performing contactless ODEP for separation of CTCs is provided with the steps of obtaining patients' blood with rare cell suspected CTCs; adding at least one fluorescent antibody binding to CTCs into the blood; staining the blood; injecting the stained blood with fluorescent dye into an ODEP device and then performing fluorescent image identification; trapping the CTCs with at least one fluorescent antibody in the ODEP device by creating an image pattern and then generating an ODEP force; Separating the trapped CTCs from other non-CTCs cells; absorbing the trapped CTCs; and obtaining a high purity of CTCs. An apparatus for performing contactless ODEP for separation of CTCs is also provided.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: April 5, 2022
    Assignee: ACE MEDICAL TECHNOLOGY CO., LTD.
    Inventor: Min-Hsien Wu