Patents Examined by Renee E Robinson
  • Patent number: 8394258
    Abstract: The invention relates to a process for producing a new type of high-quality hydrocarbon base oil of biological origin. The process of the invention comprises ketonization, hydrodeoxygenation, and isomerization steps. Fatty acids and/or fatty acid esters based on a biological raw material are preferably used as the feedstock.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: March 12, 2013
    Assignee: Neste Oil Oyj
    Inventors: Eija Koivusalmi, Johan-Fredrik Selin, Juha Moilanen
  • Patent number: 8388832
    Abstract: A process for the treatment of a tailings stream is provided. The tailings stream comprises water, sand and clay fines and is produced from bitumen extraction process of an oil sands ore. The process for treating the tailings stream comprises contacting a polysilicate microgel, a polyacrylamide and one or both of a multivalent metal compound and a low molecular weight cationic organic polymer with a tailings stream to flocculate sand and clay fines.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: March 5, 2013
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert Harvey Moffett, Peter Andrin
  • Patent number: 8388739
    Abstract: A method for treating natural gas using a vessel having a manifold for introducing gas in the vessel, a flow disperser above the manifold that prevents channeling of the gas, a spray system for spraying a treating liquid into an upwardly rising column of gas and, optionally, a liquid level controller for maintaining the level of a pool of treating liquid above the flow disperser.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: March 5, 2013
    Assignee: Valerus Compression Services, LP
    Inventors: Edwin W. Cash, Thomas J. Bradley
  • Patent number: 8382881
    Abstract: The invention provides a method for removing mercury from a liquid or gas hydrocarbon stream, mixtures thereof, including mixtures of liquid streams with a solid carbonaceous substance, by contacting the hydrocarbon stream with a composition comprising silver and a support material, wherein the composition as measured by ammonia chemisorption has a surface acidity in the range of 0.1-10.0 ?mole of irreversible NH3/g of the composition.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 26, 2013
    Inventors: Madan M. Bhasin, Mark K. Brayden, Foppe Dupius, Peter E. Groenendijk, Seyed R. Seyedmonir, Michael C. Smith, Fredrick W. Vance
  • Patent number: 8377290
    Abstract: Provided are methods of reducing a sulfur concentration in a liquid fuel and methods of forming a thiophene/metal complex in a liquid fuel. The method can involve combining a liquid fuel and at least one metal acetate to form a thiophene/metal complex and substantially removing the thiophene/metal complexes from the liquid fuel. A thiophene concentration in a liquid fuel is reduced by the formation of an insoluble complex salt, which can be removed by, for example, centrifuge, filtration, decantation, and/or distillation.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: February 19, 2013
    Assignee: James K. and Mary A. Sanders Family L.L.C.
    Inventors: Richard William Tock, James Kenneth Sanders, Duck Joo Yang
  • Patent number: 8372270
    Abstract: It has been discovered that metals can be removed or transferred from a hydrocarbon phase to a water phase in an emulsion breaking process by using a composition that contains a demulsifier (for instance, an oxyalkylated alkyl resin and/or a crosslinked polypropylene glycol), a surfactant, a diketone and a solvent (for instance an aromatic solvent). The method may also include introducing a hydroxyl carboxylic acid and/or at least one mineral acid to reduce the pH of the desalter wash water. The method permits transfer of metals into the aqueous phase with little or no hydrocarbon phase undercarry into the aqueous phase. The composition is particularly useful in treating crude oil emulsions, and in removing iron therefrom.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: February 12, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Tran M. Nguyen, Jerry J. Weers, Jianzhong Yang, Ksenija Babic
  • Patent number: 8372266
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock, the system employs a plurality of contacting zones and separation zones and an interstage solvent deasphalting unit. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones which operates at a temperature within 20° F. and a pressure within 10 psi of the pressure in the contacting zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is sent to the interstage solvent deasphalting unit, for separating unconverted heavy oil feedstock into deasphalted oil and asphaltenes. The deasphalted oil stream is sent to one of the contacting zones for further upgrade.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Goutam Biswas, Darush Farshid
  • Patent number: 8372347
    Abstract: Improvements in the selective extraction of relatively low molecular weight oils from coal, coal liquids, oil shales, shale oils, oil sands, heavy and semi-heavy oils, bitumens, and the like are provided by a continuous process involving contacting the material to be treated with supercritical water in a continuous operation at pressures of from 500 psi to 3000 psi, temperatures of 250° C. to 450° C., and in-reactor dwell times generally in excess of 25 seconds and up to 10 minutes.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 12, 2013
    Assignee: Yeda Research and Development Co. Ltd
    Inventors: Brian Berkowitz, Stephen R. Dunn, Ishai Dror
  • Patent number: 8372271
    Abstract: It has been discovered that metals and/or amines can be removed or transferred from a hydrocarbon phase to a water phase in an emulsion breaking process by using a composition that contains water-soluble hydroxyacids. Suitable water-soluble hydroxyacids include, but are not necessarily limited to glycolic acid, gluconic acid, C2-C4 alpha-hydroxy acids, poly-hydroxy carboxylic acids, thioglycolic acid, chloroacetic acid, polymeric forms of the above hydroxyacids, poly-glycolic esters, glycolate ethers, and ammonium salt and alkali metal salts of these hydroxyacids, and mixtures thereof. The composition may also include at least one mineral acid to reduce the pH of the desalter wash water. A solvent may be optionally included in the composition. The invention permits transfer of metals and/or amines into the aqueous phase with little or no hydrocarbon phase undercarry into the aqueous phase.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 12, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Tran M. Nguyen, Lawrence N. Kremer, Jerry J. Weers
  • Patent number: 8366912
    Abstract: A method for recovering base oil from waste lubricating oil by separating base oil range constituents from a waste lubricating oil mixture, thereafter separating higher quality base oil constituents and lower quality base oil constituents from the base oil recovered from the waste lubricating oil mixture and thereafter treating the lower quality base oil constituents to produce marketable base oil. The total base oil produced from a waste lubricating oil mixture by this process is greater than the quantity producible by previous processes using only base oil separation from the waste lubricating oil mixture or processes which use only treatment of the base oil recovered from the waste lubricating oil mixture to produce the product base oil.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: February 5, 2013
    Assignee: ARI Technologies, LLC
    Inventor: Martin R. MacDonald
  • Patent number: 8366911
    Abstract: The present invention provides a method of producing a liquid fuel enabling production of middle distillate at a high yield from a feed oil containing paraffinic hydrocarbons having 20 to 100 carbon atoms as main components without losing the high cracking activity and also enabling provision of high quality gas oil included in the middle distillate. A feed oil containing paraffinic hydrocarbons having 20 to 100 carbon atoms as main components is subjected to hydrotreating in the present of a prespecified hydrotreating catalyst and under the conditions for hydrotreating including a temperature of 200 to 350° C., a liquid hourly space velocity of 0.1 to 5.0 h?1, and a partial pressure of hydrogen of 0.5 to 8 MPa to obtain an effluent oil, and then the effluent oil is fractionated to obtain middle distillate including a gas oil with a cetane number of 75 or over and a pour point of ?27.5° C. or below at a yield of 55% or over against a total weight of the feed oil.
    Type: Grant
    Filed: April 26, 2008
    Date of Patent: February 5, 2013
    Assignees: Nippon Oil Corporation, JGC Catalysts & Chemicals Ltd.
    Inventors: Hiroyuki Seki, Masahiro Higashi, Sumio Saito, Ryuzo Kuroda, Takashi Kameoka
  • Patent number: 8366910
    Abstract: A process is described for hydroconversion of a mixture of organic oils of different origins in a conventional hydrotreatment unit, constituted by at least two catalyst beds, under moderately severe process conditions to obtain diesel fuel oil. The process includes injection of a stream of oil of animal or plant origin, with independently adjusted flow rates, from the second catalyst bed of the hydrotreatment unit onwards, in accordance with the variations in temperature observed in each of the catalyst beds after the first bed. The process is applicable to conventional hydrotreatment units, and makes it possible to overcome the effects of the highly exothermic nature of hydroconversion reactions in oils of animal and/or plant origin in hydrotreatment process for obtaining specified diesel fuel oil.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: February 5, 2013
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Jefferson Roberto Gomes, Raissa Maria Cotta Ferreira da Silva, Rogerio Oddone, Adriana de Souza Ferreira, Nelmo Furtado Fernandes
  • Patent number: 8366915
    Abstract: Methods for reducing calcium deposition along surfaces in contact with the water phase of a resolved water/oil emulsion are disclosed. High calcium crude oil and the like are contacted with a sequestrant to form a sequestered calcium containing complex that partitions to the water phase in the resolved emulsion. A specifically formulated polymeric deposit control agent is added to the water phase to inhibit calcium deposit formation therein and along surfaces in contact with the water phase.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Alan E. Goliaszewski, David B. Engel, Roger C. May
  • Patent number: 8349268
    Abstract: A process and apparatus for upgrading heavy hydrocarbons such as asphaltenes to lighter oil and gas components is disclosed. The process provides a reaction environment that promotes fast and selective cracking of heavy hydrocarbons, while minimizing coke formation and fouling and enhancing product yields.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: January 8, 2013
    Assignee: Value Creation Inc.
    Inventor: Columba Yeung
  • Patent number: 8342198
    Abstract: A drag reducing additive for heavy oil, such as crude oil, includes a polymeric alkyl-substituted phenol formaldehyde resin and a solvent having at least one of an ester (e.g. ethyl acetate), an aldehyde (e.g. butyraldehyde), and an aromatic hydrocarbon (e.g. toluene, xylene, and the like), or mixtures thereof. When used together with a diluent (e.g. condensate, naphtha, or the like), the additive may reduce viscosity of the combined oil, diluent, and additive by at least 20%, increase throughput by at least 6%, reduce power consumption by at least 3%, reduce the diluent proportion by at least 3%, or some combination of these effects, as compared with an otherwise identical heavy oil without the additive.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: January 1, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Samuel Asomaning, Scott E. Lehrer
  • Patent number: 8343336
    Abstract: A high sulfur content crude oil feedstream is treated by mixing one or more selected solvents with a sulfur-containing crude oil feedstream for a predetermined period of time, allowing the mixture to separate and form a sulfur-rich solvent-containing liquid phase and a crude oil phase of substantially lowered sulfur content, withdrawing the sulfur-rich stream and regenerating the solvent, hydrotreating the remaining sulfur-rich stream to remove or substantially reduce the sulfur-containing compounds to provide a hydrotreated low sulfur content stream, and mixing the hydrotreated stream with the separated crude oil phase to thereby provide a treated crude oil product stream of substantially reduced sulfur content and without significant volume loss.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: January 1, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Esam Zaki Hamad, Emad Naji Al-Shafei, Ali Salim Al-Qahtani
  • Patent number: 8333884
    Abstract: Partial conversion hydrocracking process comprising the steps of (a) hydrotreating a hydrocarbon feedstock with a hydrogen-rich gas to produce a hydrotreated effluent stream comprising a liquid/vapor mixture and separating the liquid/vapor mixture into a liquid phase and a vapor phase, and (b) separating the liquid phase into a controlled liquid portion and an excess liquid portion, and (c) combining the vapor phase with the excess liquid portion to form a vapor plus liquid portion, and (d) separating an FCC feed-containing fraction from the controlled liquid portion and simultaneously hydrocracking the vapor plus liquid portion to produce a diesel-containing fraction, or hydrocracking the controlled liquid portion to produce a diesel-containing fraction and simultaneously separating a FCC feed-containing fraction from the vapor plus liquid portion. The invention also includes an apparatus for carrying out the partial conversion hydrocracking process.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 18, 2012
    Assignee: Haldor Topsoe A/S
    Inventors: Michael Glenn Hunter, Angelica Hidalgo Vivas, Lars Skov Jensen, Gordon Gongngai Low
  • Patent number: 8334231
    Abstract: The present invention provides a hydrocracking catalyst comprising a moulded composite support of a zeolite molecular sieve with alumina, at least one of VIII Group metal components, at least one of VIB Group metal components and an organic additive; said organic additive is one or more compounds selected from the group consisting of oxygen-containing or nitrogen-containing organic compounds; the content of said zeolite molecular sieve is 3˜60 wt %, the content of said alumina is 10˜80 wt %, and the content of said organic additive is 0.1˜40 wt % based on the weight of said catalyst; the content of said VIII Group metal component is 1˜15 wt % and the content of said VIB Group metal component is 5˜40 wt % as calculated on oxide and based on the weight of said catalyst. The present invention relates also to a preparation method of said hydrocracking catalyst and use of the catalyst in the hydrocracking process of hydrocarbon oil.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: December 18, 2012
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Yichao Mao, Hong Nie, Jianwei Dong, Zhenlin Xiong, Zhihai Hu, Yahua Shi, Dadong Li
  • Patent number: 8329610
    Abstract: The present invention relates to a hydrogenation catalyst composition, process for preparing the same and use thereof. The composition comprises a hydrogenation catalyst, an organonitrogen compound in an amount of 0.01%-20% by weight of the catalyst, a sulfiding agent in an amount of 30%-150% by weight of the sulfur-requiring amount calculated theoretically of the hydrogenation catalyst, and an organic solvent in an amount of 0.1%-50% by weight of the catalyst. The preparation process comprises introducing the required substances onto the hydrogenation catalyst in oxidation state. By introduction of the organonitrogen compound, sulfur and organic solvent, the hydrogenation catalyst composition of the present invention may further increase the sulfur-maintaining ratio of the catalyst during the activation, slow down the concentrative exothermic phenomenon, decrease the rate of temperature rise of the catalyst bed layer, and improve the activity of the catalyst.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: December 11, 2012
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, Sinopec Corp.
    Inventors: Yulan Gao, Xiangchen Fang, Gang Wang, Fenglan Cao, Chonghui Li, Guang Chen
  • Patent number: 8313640
    Abstract: A method for reducing coke fouling in a burner tip when a waste gas stream containing unsaturated hydrocarbons is combusted by coating the interior of the burner tip and/or impregnating the body of the burner tip with a hydrocarbon hydrogenation promoting catalyst and/or a combustion catalyst.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: November 20, 2012
    Assignees: Lyondell Chemical Technology, L.P.
    Inventors: Mark P. Kaminsky, Bala S. Devakottai, Sellamuthu G. Chellappan