Patents Examined by Renee E Robinson
  • Patent number: 9187697
    Abstract: A coal or carbonaceous material upgrading process for power station use, the process comprising a number of steps. First comminuting the coal or carbonaceous to a comminuted material. Second pre-treating the comminuted coal with a pulsing single frequency microwave and vacuum to reduce its water and oxygen content; the pre-treating stage being carried out at a temperature of up to 180 C. Third, treating the pre-treated comminuted material with a pulsing single frequency microwave energy under vacuum to optimize the volatile organic materials; the treatment stage being carried out at a temperature of up to 350 C. Next pyrolyzing the treated coal with a pulsing single frequency microwave and vacuum to produce a hot gas and a solid carbon residue; the pyrolyzing stage is carried out at a temperature of up to 720 C.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: November 17, 2015
    Inventor: Rodolfo Antonio M. Gomez
  • Patent number: 9186596
    Abstract: Odorant from a process stream is removed by passing the stream (18) to a counter-current contacting device (12) for stripping odorants. The odorants passes from the contacting device (12) as contaminated steam (26) while the remaining process stream passes directly to a “tube side” of a falling film evaporator (14) and is heated producing steam that passes into the counter-current contacting device (12) to strip that process stream and produce the contaminated steam (26). This contaminated steam from the contacting device (12) passes through a vapor compression step (16) from which it is introduced into a “shell side” of the falling film evaporator (14) and in which it heats the process stream passing from the contacting device (12) into the evaporator (14). The contaminated steam that is not condensed in the falling film evaporator passes as a low flow vent gas (50) in which the odorants have been concentrated.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: November 17, 2015
    Assignee: Alcoa of Australia Limited
    Inventor: Peter Stewart Hay
  • Patent number: 9187702
    Abstract: The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 17, 2015
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Bi-Zeng Zhan, Theodorus Maesen, Janine Lichtenberger, Andrew Rainis, Hye-Kyung Timken
  • Patent number: 9169450
    Abstract: The present invention is directed to a process for converting heavy hydrocarbonaceous feeds to jet and diesel products: using a single reactor, dual catalyst system; or using a single reactor, multiple catalyst system.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: October 27, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventor: Cong-Yan Chen
  • Patent number: 9169448
    Abstract: A method for upgrading a heavy oil includes: disposing a catalyst comprising rhodium and a support in a heavy oil environment, the heavy oil environment including a heavy oil comprising an aromatic compound; introducing hydrogen; and hydrogenating the aromatic compound with the catalyst and hydrogen to upgrade the heavy oil to upgraded oil. A method for converting an asphaltene includes: disposing a supported catalyst in a composition comprising an asphaltene, the supported catalyst being a low temperature catalyst; introducing hydrogen; and hydrogenating the asphaltene to convert the asphaltene into a hydrogenated asphaltene.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 27, 2015
    Assignee: Baker Hughes Incorporated
    Inventor: Oleg A. Mazyar
  • Patent number: 9169445
    Abstract: Oil is recovered from a mercury containing oily solids by mixing the solids with at least a treating agent selected from selected from flocculants, sulfidic compounds, demulsifiers, and combinations thereof, and optionally a solvent, forming a mixture. The mixture is then separated to recover a first phase containing treated oil having less than 50% of the original amount of mercury in the oily solids, and a second phase containing treated solids having a reduced concentration of mercury. In one embodiment, the oily solids comprise filter aid materials, e.g., diatomaceous earth filter media, removed from a mercury removal filtration unit by backflushing the filter.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 27, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Russell Evan Cooper, Dennis John O'Rear, Seyi Abiodun Odueyungbo
  • Patent number: 9168466
    Abstract: A grid of pipes for conducting steam at a pressure greater than a vessels' operating pressure and delivering the steam throughout the grid forms the internals for a tailings solvent recovery unit. The delivery of steam throughout the grid aids in maintaining a relatively low partial pressure throughout the vessel to act as a driver for mass transfer. Conducting the steam at the higher pressure through the pipes in the grid permits a surface of the pipes to be heated to a temperature higher than possible in a conventional vessel, increasing the heat transfer to the feed stream which flows through the grid.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: October 27, 2015
    Assignee: TOTAL E&P CANADA LTD
    Inventors: Ali Milani, Jianmin Kan
  • Patent number: 9162207
    Abstract: The invention relates to a fluidized bed reactor and a hydrogenation method thereof. The fluidized bed reactor (7) comprises a reactor shell (103) vertical to the ground and a phase separator (111) at the upper part of the shell (103). An inner circulation zone is provided under the phase separator (111), and comprises a cylinder (114), a tapered diffusion section (115) and a guiding structure (104). In the hydrogenation method using the fluidized bed reactor (7), an expanded bed reactor (3) is used to further hydrogenate part of the product from the fluidized bed reactor (7), and supply catalyst without influencing on the stable operation of the fluidized bed reactor (7).
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 20, 2015
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum & Petrochemicals Sinopec
    Inventors: Li Jia, Yongzhong Jia, Hailong Ge
  • Patent number: 9162208
    Abstract: A system and process for producing synthetic crude oil from produced fluids of an oil well is disclosed. The system comprises a separation plant for producing an associated gas stream from produced fluids a membrane unit comprising a plurality of polymer membranes to provide a CO2 enriched permeate stream and a CO2 depleted product gas stream, a gas conversion plant for converting the CO2 depleted product gas stream into a synthetic crude oil and a heat exchanger adding heat to the associated gas stream so that the membrane unit operates at a temperature of at least 80° C. during separation of the associated gas stream using the membrane unit. A process using the aforementioned components, including separation of the associated gas stream using the membrane unit at a temperature >80° C., into a CO2 enriched stream and a CO2 depleted product stream, is also described.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: October 20, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Daniel Chinn, Gordon R. Deppe, Anne M. Helgeson, Shabbir Husain
  • Patent number: 9139781
    Abstract: The morphology of petroleum cokes produced by the delayed coking of feeds produced from extra-heavy crude sources such as those from the Venezuela Orinoco Heavy Oil Belt can be controlled to produce a less dense coke which is less likely to inflame in the coke pit or in subsequent handling. An aqueous solution of an alkali metal or alkaline earth metal carbonate salt when added to a feed of this type which would normally produce a dense coke product is effective to produce a quenchable coke product of lower density and higher porosity, usually in compact, granular form permitting it to be readily discharged from the drum.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 22, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Fritz A. Bernatz, Michael Siskin, Christopher P. Eppig, Craig Y. Sabottke, Eric W. Fryatt
  • Patent number: 9132421
    Abstract: A composition having a substantial or material absence of or no phosphorous and comprising a support material, a metal compound and either a hydrocarbon oil or a polar additive or a combination of both a hydrocarbon oil and polar additive. The polar additive has particularly defined properties including having a dipole moment of at least 0.45. The composition is useful in the hydroprocessing of hydrocarbon feedstocks, and it is especially useful in the hydrotreating of vacuum gas oils and petroleum resid feedstocks.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 15, 2015
    Assignee: Shell Oil Company
    Inventors: Alexei Grigorievich Gabrielov, Ed Ganja, Theofiel Meuris, Maxim Vasilievich Ovchinnikov
  • Patent number: 9127217
    Abstract: A process of upgrading a highly aromatic hydrocarbon feedstream comprising (a) contacting a highly aromatic hydrocarbon feedstream, having a normal paraffin content of greater than at least about 5 wt %, wherein a major portion of the feedstream has a boiling range of from about 300° F. to about 800° F. under catalytic conditions with a catalyst system, containing a hydrotreating catalyst, a hydrogenation/hydrocracking catalyst, and a dewaxing catalyst in a single stage reactor system, wherein the active metals in the hydrogenation/hydrocracking catalyst comprises from about 5%-30% by weight of nickel and from about 5%-30% by weight tungsten; and (b) wherein at least a portion of the highly aromatic hydrocarbon feedstream is converted to a product stream having a boiling range within jet or diesel boiling ranges.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 8, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jaime Lopez, Janine Lichtenberger
  • Patent number: 9120984
    Abstract: Phosphoranimide-metal catalysts and their role in hydrodesulfurization are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodesulfurization.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 1, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 9095835
    Abstract: A method of operating a hydrocarbon material processing system includes feeding a hydrocarbon feedstock from a hydrocarbon feedstock source into a reaction tube positioned within an opening of a waveguide, feeding a process gas from a process gas source into the reaction tube, receiving microwaves in the waveguide from a microwave generator, energy from the waveguide in the reaction tube to cause the feedstock and process gas to react and form into a product stream comprising a fuel product. The method also includes periodically delivering a cleaning gas into the reaction tube, without stopping the propagation of the energy and without pausing the feeding of the hydrocarbon feedstock and the process gas into the reaction tube.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: August 4, 2015
    Assignee: H QUEST PARTNERS, LP
    Inventors: George L. Skoptsov, Alan A. Johnson
  • Patent number: 9090837
    Abstract: The present invention relates to the field of processing hydrocarbons which causes corrosion in the metal surfaces of processing units. The invention addresses the technical problem of high temperature naphthenic acid corrosion and sulphur corrosion and provides a solution to inhibit these types of corrosion. The composition formed by reacting high reactive polyisobutylene (HRPIB) with phosphorous pentasulphide in presence of catalytic amount of sulphur provides high corrosion inhibition efficiency in case of high temperature naphthenic acid corrosion inhibition and sulphur corrosion inhibition. The invention is useful in all hydrocarbon processing units, such as, refineries, distillation columns and other petrochemical industries.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 28, 2015
    Assignee: DORF KETAL CHEMICALS (I) PRIVATE LIMITED
    Inventor: Mahesh Subramaniyam
  • Patent number: 9067191
    Abstract: The present invention provides a hydrodesulfurization catalyst that exhibits a high desulfurization activity when used in hydrotreatment of hydrocarbon oil, in particular straight-run gas oil. The catalyst includes at least one type of metal component selected from Groups VIA and VIII in the periodic table, supported on a silica-titania-alumina support where the total of the diffraction peak area indicating the crystal structure of anatase titania (101) planes and the diffraction peak area indicating the crystal structure of rutile titania (110) planes is ¼ or less of the diffraction peak area indicating the aluminum crystal structure ascribed to ?-alumina (400) planes, as measured by X-ray diffraction analysis. The catalyst has (a) a specific surface area (SA) of 150 m2/g or greater, (b) a total pore volume (PVo) of 0.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 30, 2015
    Assignees: JX Nippon Oil & Energy Corporation, JGC Catalysts and Chemicals Ltd.
    Inventors: Hiroyuki Seki, Yoshiaki Fukui, Masanori Yoshida, Shogo Tagawa, Tomoyasu Kagawa
  • Patent number: 9062256
    Abstract: A process and apparatus for improving the production of coke having a high volatile combustible material content are disclosed. The process may include, for example: heating a coker feedstock to a coking temperature to produce a heated coker feedstock; contacting the heated coker feedstock with a quench medium to reduce a temperature of the heated coker feedstock and produce a quenched feedstock; feeding the quenched feedstock to a coking drum; subjecting the quenched feedstock to thermal cracking in the coking drum to (a) crack a portion of the quenched feedstock to produce a cracked vapor product, and (b) produce a coke product having a volatile combustible material (VCM) concentration in the range from about 13% to about 50% by weight, as measured by ASTM D3175.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: June 23, 2015
    Assignee: Catalytic Distillation Technologies
    Inventors: Ahmad Faegh, John C. Collins, Virendra Manral, Gary Reisen
  • Patent number: 9062261
    Abstract: The invention relates to a catalytic cracking process for reducing sulfur content in gasoline and the device thereof, which includes a fluidized bed reactor in addition of a heavy oil catalytic cracking riser, characterized in enhancing contact time of oil-gas with the catalyst, further desulfurizing and reducing olefin content and increasing octane number in gasoline; regenerating all recycling catalysts, quality of products being stable and easily operated, reducing sulfur of gasoline to a maximum limit; adding a cooling device so as to avoid coking when the catalyst contacts with oil-gas in high temperature and decrease of yield of light oil resulted by excessively high reaction temperature of gasoline upgrading, improving products distribution, being flexible to change catalyst-oil ratio and reaction temperature of catalytic cracking reaction.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 23, 2015
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xionghou Gao, Shuhong Sun, Lin Wang, Xinmei Pang, Zhifeng Wang, Yongfu Gao, Zhaoyong Liu, Conghua Liu, Jinsen Gao, Gang Wang, Yanhui Zhang, Tao Liu, Juanjuan Liu
  • Patent number: 9062259
    Abstract: A process for catalytically cracking and oxidatively desulfurizing a hydrocarbon feedstock containing organosulfur compounds is provided. Oxygen containing gas is introduced with a cracking catalyst and the feed to form a suspension. At least a portion of organosulfur compounds in the hydrocarbon feedstock are oxidized to form oxidized organosulfur compounds, carbon-sulfur bonds of oxidized organosulfur compounds are cleaved to form sulfur-free hydrocarbon compounds and sulfur oxides, and oxidized and unoxidized compounds are catalytically cracked into hydrocarbon compounds of lower boiling points. Cracked components and the cracking catalyst particles are separated and recovered for regeneration and reuse.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 23, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Abdennour Bourane
  • Patent number: 9051520
    Abstract: A process for the production of middle distillates comprising at least one hydrocracking stage that oligomerizes a paraffinic feedstock produced by Fischer-Tropsch synthesis, the process using a catalyst that comprises at least one hydrogenating-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table, by themselves or in a mixture, and a substrate that comprises a beta zeolite in the form of crystallites with a mean size that is less than 100 nm dispersed in at least one porous mineral matrix, whereby the beta zeolite has a mesopore volume of less than 0.4 ml/g.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: June 9, 2015
    Assignees: UNIVERSITE DE POITIERS, C.N.R.S., IFP ENERGIES NOUVELLES
    Inventors: Nuno Miguel Rocha Batalha, Ludovic Pinard, Francisco Manuel Da Silva Lemos, Fernando Manuel Ramoa Ribeiro, Emmanuelle Guillon, Christophe Bouchy